如果n是正整数,那么18[1-(-1)n](n2-1)的值()A.一定是零B.一定是偶数C.是整数但不一定是偶数D.不一定是整数-数学

题文

如果n是正整数,那么
1
8
[1-(-1)n](n2-1)的值(  )
A.一定是零B.一定是偶数
C.是整数但不一定是偶数D.不一定是整数
题型:单选题  难度:中档

答案

当n为奇数时,(-1)n=-1,1-(-1)n=2,
设不妨n=2k+1(k取自然数),
则n2-1=(2k+1)2-1=(2k+1+1)(2k+1-1)=4k(k+1),
∴k与(k+1)必有一个是偶数,
∴n2-1是8的倍数.
所以
1
8
[1-(-1)n](n2-1)=
1
8
×2×8的倍数,
即此时
1
8
[1-(-1)n](n2-1)的值是偶数;
当n为偶数时,(-1)n=1,1-(-1)n=0,
所以
1
8
[1-(-1)n](n2-1)=0,
此时
1
8
[1-(-1)n](n2-1)的值是0,也是偶数.
综上所述,如果n是正整数,
1
8
[1-(-1)n](n2-1)的值是偶数.
故选B.

据专家权威分析,试题“如果n是正整数,那么18[1-(-1)n](n2-1)的值()A.一定是零B.一定是..”主要考查你对  有理数定义及分类,有理数的乘方  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类有理数的乘方

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

考点名称:有理数的乘方

  • 有理数乘方的定义:
    求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
    22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
    ①习惯上把22叫做2的平方,把23叫做2的立方;
    ②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。

  • 乘方的性质:
    乘方是乘法的特例,其性质如下:
    (1)正数的任何次幂都是正数;
    (2)负数的偶次幂是正数,负数的奇次幂是负数;
    (3)0的任何(除0以外)次幂都是0;
    (4)a2是一个非负数,即a2≥0。

  • 有理数乘方法则:
    ①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
    ②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

    点拨:
    ①0的次幂没意义;
    ②任何有理数的偶次幂都是非负数;
    ③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
    ④负数的乘方与乘方的相反数不同。

  • 乘方示意图: