若a是自然数,则a4-3a2+9是质数还是合数?给出你的证明.-数学

题文

若a是自然数,则a4-3a2+9是质数还是合数?给出你的证明.
题型:解答题  难度:中档

答案

原式=(a4+6a2+9)-9a2=(a2+3a+3)(a2-3a+3),
当a=0时,原式=9是合数;
当a=1时,原式=7是质数;
当a=2时,原式=13也是质数;
当a>2时,a2+3a+3>1,a2-3a+3=(a-2)(a-1)+1>1,
这说明,此时a4-3a2+9可以分解为两个大于1的自然数的积,即它是合数.
故当a=0或a>2时原式的值是合数;
当a=1或a=2时原式的值是质数.

据专家权威分析,试题“若a是自然数,则a4-3a2+9是质数还是合数?给出你的证明.-数学-魔方..”主要考查你对  有理数定义及分类  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数