确定自然数n的值,使关于x的一元二次方程2x2-8nx+10x-n2+35n-76=0的两根均为质数,并求出此两根.-数学

题文

确定自然数n的值,使关于x的一元二次方程2x2-8nx+10x-n2+35n-76=0的两根均为质数,并求出此两根.
题型:解答题  难度:中档

答案

设方程两根为x1、x2,则x1+x2=4n-5,
∵4n-5是奇数,即x1+x2是奇数,
∴x1与x2必定一奇一偶,而x1与x2都是质数,
故必有一个为2,不妨设x1=2,则2×22-(8n-10)×2-(n2-35n+76)=0,
∴n=3或n=16,
当n=3时,原方程即2x2-14x+20=0,此时两根为x1=2,x2=5,
当n=16时,原方程即2x2-118x+228=0,此时两根为x1=2,x2=57.

据专家权威分析,试题“确定自然数n的值,使关于x的一元二次方程2x2-8nx+10x-n2+35n-76=..”主要考查你对  有理数定义及分类,一元二次方程根与系数的关系  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类一元二次方程根与系数的关系

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0