(12分)喜爱数学的小明一天在家里发现他妈妈刚从超市买回来的2块超能皂,小明仔细看了超能皂外包装上的尺寸说明,每块的尺寸均是是:长(a)、宽(b)、高(c)分别是16cm,6cm,3cm-七年级数学

题文

(12分)喜爱数学的小明一天在家里发现他妈妈刚从超市买回来的2块超能皂, 小  明仔细看了超能皂外包装上的尺寸说明,每块的尺寸均是是:长(a)、宽(b)、高(c)分别是16cm,6cm,3cm.他想起老师讲过关于物体外包装用料最省的问题,就想研究这两块超能皂如何摆放,它的外包装用料才最省?
实践与操作:小明动手摆放了这2块超能皂摆放情况,发现无论怎样放置,体积都不会发生变化,但是由于摆放位置的不同,它们的外包装用料不同,经过实际操作发现这两块超能皂有3种不同的摆放方式,如图所示:
 
①请你帮助小明指出图1,图2,图3这3种不同摆放方式的长、宽、高,并计算其外包装用料,填写在下表中(包装接头用料忽略不计)?:
 
  长(cm)
 宽(cm)
 高(cm)
  表面积(cm2)
 图1
 
 
 
 
 图2
 
 
 
 
 图3
 
 
 
 
 
探究与思考:如果现在有4块这样的超能皂,如何摆放使它的外包装用料最省呢?说说你的理由

题型:解答题  难度:偏易

答案

16 6 6 456
32 6 3 612
16 12 3 552
716  重叠部分越大,包装越小。


专题:阅读型;方案型.
分析:长方体体积与表面积的变化:按图1摆放,长宽没变,高发生了变化;按图2摆放,宽高没变,长发生了变化;按图3摆放,长高没变,宽发生了变化.在体积不变的情况下,长宽高有一边发生变化,表面积都会有变化.根据变化规律可发现放多块超能皂时外包装的用料情况.
解答:解:按图1摆放,长为16,宽为6,高为6,表面积=2(16×6+16×6+6×6)=456
按图2摆放,长为32,宽为6,高为3,表面积=2(32×6+32×3+6×3)=612
按图3摆放,长为16,宽为12,高为3,表面积=2(16×12+16×3+12×3)=556
 
   长(cm)
  宽(cm)
  高(cm)
   表面积(cm2
  图1
16
6
6
2(16×6+16×6+6×6)=456
  图2
32
6
3
2(32×6+32×3+6×3)=612
  图3
16
12
3
2(16×12+16×3+12×3)=552
因此:按图1摆放,表面积是最小的.
∵长>宽>高,∴按图1摆放时,所构成的新长方体的长是最小的,而宽高的变化不是太大,
∴表面积就会小一些.
故4块超能皂按图1摆放时,外包装用料最省,即将最大的面重合在一起即可.

点评:本题考查了长方体,在体积不变的情况下,长宽高一边发生变化,表面积会发生变化.