观察下面三行数:—2,4,—8,16,—32,64,…①6,—6,18,—30,66,…②,—1,2,—4,8,—16,32,…③小题1:(1)第①行数按什么规律排列?小题2:(2)第②③行数与第①行数分别有什么关系?-七年级数学

题文

观察下面三行数:
—2,  4, —8, 16, —32, 64,…    ①
6, —6, 18, —30, 66,…    ②
,   —1,  2, —4,  8, —16, 32,…    ③
小题1:(1)第①行数按什么规律排列?
小题2:(2)第② ③行数与第①行数分别有什么关系?
小题3:(3)取每行的第十个数,计算这三个数的和。(10分)25. 出租车司机小李某天下午的营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:
+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6
(1)小李下午出发地记为0,他将最后一名乘客送抵目的地时,小李距下午出车时的出发地有多远?(2)若汽车耗油量为0.41升/千米,这天下午小李共耗油多少升?(10分)

题型:解答题  难度:偏易

答案


小题1:略
小题2:略
小题3:


小题1:(1)观察可看出第一行的数分别是-2的一次方,二次方,三次方,四次方…且奇数项是负数,偶数项是正数,用式子表示规律为:(—2)n
小题2:(2)观察可知,
第二行数中:每一个项的数都比第一行对应项的数多2,根据此规律可用式子表示规律为:(—2)n+2;
第三行数中:每一个项的数都是第一行对应项的数的1/2,根据此规律可用式子表示规律为:—(—2)n-1
小题3:(3)根据规律分别求得其第10个数的值,再求其和即可
第一行的第十个数为:1024;
第二行的第十个数为:;1026
第三行的第十个数为:512;
故这三个数的和为:2562.
25:解:(1)出发地记为0,则小李距下午出车时的出发地的距离为:+15+(-2)+(+5)+(-1)+(+10)+(-3)+(-2)+(+12)+(+4)+(-5)+(+6)=39(千米);
答:小李距下午出车时的出发地有39千米.
(2)根据题意,小李这天下午的行车里程为:15+2+5+1+10+3+2+12+4+5+6=65(千米);
小李共耗油:0.41×65=26.65(千米);
答:这天下午小李共耗油多少升26.65升.

据专家权威分析,试题“观察下面三行数:—2,4,—8,16,—32,64,…①6,—6,18,—30,66,..”主要考查你对  有理数定义及分类,正数与负数,数轴,相反数  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类正数与负数数轴相反数

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

考点名称:正数与负数

  • 正数:
    就是大于0的(实数)
    负数
    就是小于0的(实数)
    0既不是正数也不是负数。

    非负数:正数与零的统称。
    非正数:负数与零的统称。

  • 正负数的认识:
    1.对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
    例如:-a一定是负数吗?
    答案是不一定,因为字母a可以表示任意的数。
    若a表示正数时,-a是负数;
    当a表示0时,-a就是在0的前面加一个负号,仍是0,0不分正负;
    当a表示负数时,-a就不是负数了,它是一个正数。

    2.引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,
    如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…

    3.数细分有五类:正整数、正分数、0、负整数、负分数;
    但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。

    4.通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;
    负整数和0统称为非正整数。

考点名称:数轴

  • 数轴定义:
    规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
    数轴具有三要素:
    原点、正方向和单位长度,三者缺一不可。
    数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。

  • 用数轴上的点表示有理数:
    每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
    1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
    2.表示正数的点都在原点右边,表示负数的点都在原点左边。
    3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。

  • 数轴的画法
    1.画一条直线(一般画成水平的直线);
    2.在直线上根据需要选取一点为原点(在原点下面标上“0”);
    3.确定正方向(一般规定向右为正,并用箭头表示出来);
    4.选取适当的长度为单位长度,
    从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;
    从原点向左,用类似的方法依次表示-1,-2,-3,…。

  • 数轴的应用范畴:
    符号相反的两个数互为相反数,零的相反数是零。(如2的相反—2)
    在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。

考点名称:相反数

  • 相反数的定义:
    像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数。
    相反数的几何意义:在数轴上到原点距离相等的两个点表示的两个数叫做互为相反数。
    相反数的代数意义:如果两个数的和为零,其中一个数是另一个数的相反数,这两个数称为互为相反数。

  • 相反数的特性:
    1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;
    2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称;
    3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。
    4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。
    5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。


  •  

  • (互为)相反数的代数意义:
    1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)
    2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。
    3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数。

    相反数的判别:
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐