如图,数轴上有三个点A、B、C,表示的数分别是-4、-2、3,请回答:小题1:若将点B向左移动5个单位后,三个点所表示的数中,最小的数是小题2:若使C、B两点的距离与A、B两点的距-七年级数学
题文
如图,数轴上有三个点A、B、C,表示的数分别是-4、-2、3,请回答: 小题1:若将点B向左移动5个单位后,三个点所表示的数中,最小的数是 小题2:若使C、B两点的距离与A、B两点的距离相等,则需将点C向左移动 个单位 小题3:若移动A、B、C三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最大的是 个单位 小题4:若在原点处有一只小青蛙,一步跳1个单位长. 小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步,…,按此规律继续跳下去,那么跳第100次时,应跳 步,落脚点表示的数是 ;跳了第n次(n是正整数)时,落脚点表示的数是 . 小题5:数轴上有个动点表示的数是x,求|x-2︱+|x+3|的最小值. |
答案
小题1:-7 小题2:3 小题3:3 12 小题4:199 100 (-1)nn 小题5:5 |
专题:规律型. 解答:解:(1)点B向左移动5个单位,表示的数是-7,根据图形,最小的数是-7; (2)点B、C之间的距离是3-(-2)=3+2=5,A、B两点的距离是-2-(-4)=2 ∴向左移动3个单位; (3)有①点A、B向点C移动,②点B、C向点A移动,③点A、C向点B移动,三种情况, ①移动距离为:7+5=12, ②移动距离为:2+7=9, ③移动距离为:2+5=7, ∴所走距离之和最少的是A、C向点B移动,为7; ∴移动方法有3种,最大距离之和为12; (4)∵第1次跳1步,第2次跳3步,第3次跳5步,第4次跳7步, … ∴第n次跳(2n-1)步, 当n=100时,2×100-1=200-1=199, 此时,所表示的数是:-1+3-5+7-…-197+199, =(-1+3)+(-5+7)+…+(-197+199), =2×, =100, ①当n是偶数时,表示的数是:-1+3-5+7-…-(2n-3)+(2n-1), =(-1+3)+(-5+7)+…+[-(2n-3)+(2n-1)], =2× =n, ②当n是奇数时,表示的数是:-1+3-5+7-…-(2n-5)+(2n-3)-(2n-1), =(-1+3)+(-5+7)+…+[-(2n-5)+(2n-3)]-(2n-1), =2×-(2n-1), =n-1-2n+1, =-n, ∴跳了第n次(n是正整数)时,落脚点表示的数是(-1)nn. (5)当时,|x-2︱+|x+3|=x-2+x+3=2x+1 当时,|x-2︱+|x+3|=2-x+x+3=5 所以|x-2︱+|x+3|的最小值为5. 点评:本题借助数轴考查了数轴上两点之间的距离的求解问题,以及数字变化规律的探讨问题,综合性较强,难度较大,但只要仔细分析,从中理清问题变化的思路便不难求解,此题计算求解时一定要仔细认真. |
据专家权威分析,试题“如图,数轴上有三个点A、B、C,表示的数分别是-4、-2、3,请回答..”主要考查你对 有理数定义及分类,正数与负数,数轴,相反数 等考点的理解。关于这些考点的“档案”如下:
有理数定义及分类正数与负数数轴相反数
考点名称:有理数定义及分类
- 有理数的定义:
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。 - 有理数的分类:
(1)按有理数的定义:
正整数
整数{ 零
负整数
有理数{
正分数
分数{
负分数
(2)按有理数的性质分类:
正整数
正数{
正分数
有理数{ 零
负整数
负数{
负分数
考点名称:正数与负数
正数:
就是大于0的(实数)
负数:
就是小于0的(实数)
0既不是正数也不是负数。非负数:正数与零的统称。
非正数:负数与零的统称。正负数的认识:
1.对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗?
答案是不一定,因为字母a可以表示任意的数。
若a表示正数时,-a是负数;
当a表示0时,-a就是在0的前面加一个负号,仍是0,0不分正负;
当a表示负数时,-a就不是负数了,它是一个正数。2.引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,
如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…3.数细分有五类:正整数、正分数、0、负整数、负分数;
但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。4.通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;
负整数和0统称为非正整数。
考点名称:数轴
- 数轴定义:
规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。
数轴具有三要素:
原点、正方向和单位长度,三者缺一不可。
数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。 - 用数轴上的点表示有理数:
每一个有理数都可用数轴上的点来表示,表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0。
1.数轴上的点表示的数不一定都是有理数,还可能是无理数,但有理数都可用数轴上的点来表示。
2.表示正数的点都在原点右边,表示负数的点都在原点左边。
3.数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小。 - 数轴的画法:
1.画一条直线(一般画成水平的直线);
2.在直线上根据需要选取一点为原点(在原点下面标上“0”);
3.确定正方向(一般规定向右为正,并用箭头表示出来);
4.选取适当的长度为单位长度,
从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;
从原点向左,用类似的方法依次表示-1,-2,-3,…。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |