在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母,…,(不论大小写)依次对应1,2,3,…,26这26个自然数.当明码字母-七年级数学







序号
14
15
16
17
18
19
20
21
22
23
24
25
26

按上述规定,将明码“hope”译成密码是
A.gawq           B.rivd           C.gihe           D.hope

题型:单选题  难度:偏易

答案

B

根据题意,得h对应的序号是8,则密码对应的序号应是18,即r;
o对应的序号是15,即密码对应的序号是9,即i;
p对应的序号是16,即密码对应的序号是22,即v;
e对应的序号是5,即密码对应的序号是4,即d.
故选B.

据专家权威分析,试题“在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到..”主要考查你对  有理数定义及分类,正数与负数,数轴,相反数  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类正数与负数数轴相反数

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

考点名称:正数与负数

  • 正数:
    就是大于0的(实数)
    负数
    就是小于0的(实数)
    0既不是正数也不是负数。

    非负数:正数与零的统称。
    非正数:负数与零的统称。

  • 正负数的认识:
    1.对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
    例如:-a一定是负数吗?
    答案是不一定,因为字母a可以表示任意的数。
    若a表示正数时,-a是负数;
    当a表示0时,-a就是在0的前面加一个负号,仍是0,0不分正负;
    当a表示负数时,-a就不是负数了,它是一个正数。

    2.引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,
    如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐