直角三角形△ABC的三边长为a,b,c,已知a-1+b2+4=4b,求c的值.-数学

首页 > 考试 > 数学 > 初中数学 > 算术平方根/2019-04-21 / 加入收藏 / 阅读 [打印]

题文

直角三角形△ABC的三边长为a,b,c,已知

a-1
+b2+4=4b,求c的值.
题型:解答题  难度:中档

答案

a-1
+b2+4=4b,即

a-1
+b2-4b+4=0,

a-1
+(b-2)2=0,
∴a-1=0且b-2=0,
解得:a=1,b=2,
由△ABC为直角三角形,
若c为斜边,则有c=

a2+b2
=

5
;若c为直角边,则有c=

b2-a2
=

3

则c为

3

5

据专家权威分析,试题“直角三角形△ABC的三边长为a,b,c,已知a-1+b2+4=4b,求c的值.-数..”主要考查你对  算术平方根,勾股定理  等考点的理解。关于这些考点的“档案”如下:

算术平方根勾股定理

考点名称:算术平方根

  • 概念:
    若一个正数x的平方等于a,即x2=a,则这个正数x为a的算术平方根。
    规定:0的算术平方根是0。
    表示:a的算术平方根记为,读作“根号a”。
    注:只有非负数有算术平方根,而且只有一个算术平方根。

  • 平方根和算术平方根的区别与联系:
    区别:
    (1)定义不同:如果一个数的平方等于a,则这个数叫做a的平方根;非负数a的非负平方根叫做a的算术平方根。
    (2)个数不同:一个正数有两个平方根,它们互为相反数;而一个正数的算术平方根只有一个。
    (3)表示方法不同:正数a的平方根表示为±,正数a的算术平方根表示为
    (4)取值范围不同:正数的算术平方根一定是正数;正数的平方根一正一负,两数互为相反数。
    联系:
    (1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种,是正的平方根。
    (2)存在条件相同:只有非负数才有平方根和算术平方根。
    (3)0的平方根,算术平方根均为0。开平方:求一个数的平方根的运算,叫做开平方。
    注:
    (1)平方和开平方的关系是互为逆运算;
    (2)乘方是求根的途径,开平方是一种运算,是求平方根的过程;
    (3)开方的方式是根号形式。

  •  

  • 电脑根号的打法:
    比较通用:
    左手按住换档键(Alt键)不放,接着依次按41420然后松开左手,根号√ ̄就出来了。
    运用Word的域命令在Word中根号:
    首先按住Ctrl+F9,出现{}后,在{}内输入EQ空格\r(开方次数,根号内的表达式),最后按住Shift+F9,就会生成你所要求的根式
    1.平方根
    一个正数的平方根有两个,它们互为相反数。比如 9 的平方根是3,-3。而5的平方根是√5,-√5。规定,零的平方根是0。负数没有平方根。
    2.算术平方根是指一个正数的正的平方根。比如 9 的算术平方根是±3。而5的算术平方根是±√5。规定,零的算术平方根是0。
    算术平方根是定义在平方根基础上,因此负数没有算术平方根。
    3.实数a的算术平方根记作√ ̄a,其中a≥0,根据以上定义有√ ̄a≥0。

考点名称:勾股定理

  • 勾股定理:
    直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,如果直角三角形的两直角边长分别为a,b,斜边长为c,那么
    勾股定理只适用于直角三角形,应用于解决直角三角形中的线段求值问题。

  • 定理作用
    ⑴勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。
    ⑵勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。
    ⑶勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。
    ⑷勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。

  • 勾股定理的应用:
    数学
    从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数。
    勾股定理在几何学中的实际应用非常广泛,较早的应用案例有《九章算术》中的一题:“今有池,芳一丈,薛生其中央,出水一尺,引薛赴岸,适与岸齐,问水深几何?答曰:"一十二尺"。

    生活
    勾股定理在生活中的应用也较广泛,举例说明如下:
    1、挑选投影设备时需要选择最佳的投影屏幕尺寸。以教室为例,最佳的屏幕尺寸主要取决于使用空间的面积,从而计划好学生座位的多少和位置的安排。选购的关键则是选择适合学生的屏幕而不是选择适合投影机的屏幕,也就是说要把学生的视觉感受放在第一位。一般来说在选购时可参照三点:
    第一,屏幕高度大约等于从屏幕到学生最后一排座位的距离的1/6;
    第二,屏幕到第一排座位的距离应大于2倍屏幕的高度;
    第三,屏幕底部应离观众席所在地面最少122厘米。
    屏幕的尺寸是以其对角线的大小来定义的。一般视频图像的宽高比为4:3,教育幕为正方形。如一个72英寸的屏幕,根据勾股定理,很快就能得出屏幕的宽为1.5m,高为1.1m。
    2、2005年珠峰高度复测行动。
    测量珠峰的一种方法是传统的经典测量方法,就是把高程引到珠峰脚下,当精确高程传递至珠峰脚下的6个峰顶交会测量点时,通过在峰顶竖立的测量觇标,运用“勾股定理”的基本原理测定珠峰高程,配合水准测量、三角测量、导线测量等方式,获得的数据进行重力、大气等多方面改正计算,最终得到珠峰高程的有效数据。
    通俗来说,就是分三步走:
    第一步,先在珠峰脚下选定较容易的、能够架设水准仪器的测量点,先把这些点的精确高程确定下来;
    第二步,在珠峰峰顶架起觇标,运用三角几何学中“勾股定理”的基本原理,推算出珠峰峰顶相对于这几个点的高程差;
    第三步,获得的高程数据要进行重力、大气等多方面的改正计算,最终确定珠峰高程测量的有效数据。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐