计算化简:(1)(2)(3)-八年级数学

题文

计算化简:
(1)
(2)
(3)
题型:计算题  难度:中档

答案

解:
(1)
(2)
(3)

据专家权威分析,试题“计算化简:(1)(2)(3)-八年级数学-”主要考查你对  二次根式的加减乘除混合运算,二次根式的化简,二次根式的乘除,二次根式的加减  等考点的理解。关于这些考点的“档案”如下:

二次根式的加减乘除混合运算,二次根式的化简二次根式的乘除二次根式的加减

考点名称:二次根式的加减乘除混合运算,二次根式的化简

  • 二次根式的加减乘除混合运算:
    顺序与师叔运算的顺序一样,先乘方,后乘除,最后算加减,有括号的先算括号内的。
    ①在运算过程中,多项式乘法,乘法公式和有理数(式)中的运算律在二次根式的运算中仍然适用。
    ②二次根式的加减乘除混合运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。
    ③运算结果是根式的,一般应表示为最简二次根式。
    二次根式的化简:
    先对分子、分母因式分解,能约分的就约分,能开方的就开方,或先对被开方数进行通分,然后再通过分母有理化进行化简。

  • 二次根式混合运算掌握:
    1、确定运算顺序。
    2、灵活运用运算定律。
    3、正确使用乘法公式。
    4、大多数分母有理化要及时。
    5、在有些简便运算中也许可以约分,不要盲目有理化。
    6、字母运算时注意隐含条件和末尾括号的注明。
    7、提公因式时可以考虑提带根号的公因式。

    二次根式化简方法:
    二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
    分母有理化:
    分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:
    (1)直接利用二次根式的运算法则:
    例:
    (2)利用平方差公式:
    例:
    (3)利用因式分解:
    例:(此题可运用待定系数法便于分子的分解)

    换元法(整体代入法):
    换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。
    例:在根式中,令,即可得到
    原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8

    提公因式法:
    例:计算


    巧构常值代入法:
    例:已知x2-3x+1=0,求的值。
    分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+c=0化为x+=,即先构造一个常数,再代入求值。
    解:显然x≠0,x2-3x+1=0化为x+=3。
    原式==2.

考点名称:二次根式的乘除

  • 二次根式的乘除法则:
    1、二次根式的乘法原则:,即两个二次根式相乘,根指数不变,相乘的结果是一个二次根式或有理式。
    2、二次根式的除法原则:,即二次根式相除,就是把被被开方数相除,根指数不变。
    有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。

考点名称:二次根式的加减

  • 二次根式加减法法则:
    先把式子中各项二次根式化成最简二次根式,然后再合并同类二次根式。
    1、同类二次根式
    一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
    2、合并同类二次根式
    把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
    3、二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
    例如:(1);2+3=5(2)+2=3
    4、注意:有括号时,要先去括号。

  • 二次根式的加减注意:
    ①二次根式合并同类项与合并同类项类似,因此二次根式的加减可以对比整式的加减进行;
    ②二次根式加减混合运算的是指就是合并同类项二次根式,不是同类二次根式不能合并。如+是最简结果,不能再合并;
    ③二次根式进行加减运算时,根号外的系数因式须保留假分数形式,如,不能写成5
    ④合并同类二次根式后若系数为多项式,须添加括号。