若与互为倒数,则[]A.a=b-1B.a=b+1C.a+b=1D.a+b=-1-九年级数学
题文
若与互为倒数,则( ) |
A.a=b-1 B.a=b+1 C.a+b=1 D.a+b=-1 |
答案
B |
据专家权威分析,试题“若与互为倒数,则[]A.a=b-1B.a=b+1C.a+b=1D.a+b=-1-九年级数..”主要考查你对 二次根式的加减乘除混合运算,二次根式的化简,倒数 等考点的理解。关于这些考点的“档案”如下:
二次根式的加减乘除混合运算,二次根式的化简倒数
考点名称:二次根式的加减乘除混合运算,二次根式的化简
- 二次根式的加减乘除混合运算:
顺序与师叔运算的顺序一样,先乘方,后乘除,最后算加减,有括号的先算括号内的。
①在运算过程中,多项式乘法,乘法公式和有理数(式)中的运算律在二次根式的运算中仍然适用。
②二次根式的加减乘除混合运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。
③运算结果是根式的,一般应表示为最简二次根式。
二次根式的化简:
先对分子、分母因式分解,能约分的就约分,能开方的就开方,或先对被开方数进行通分,然后再通过分母有理化进行化简。 二次根式混合运算掌握:
1、确定运算顺序。
2、灵活运用运算定律。
3、正确使用乘法公式。
4、大多数分母有理化要及时。
5、在有些简便运算中也许可以约分,不要盲目有理化。
6、字母运算时注意隐含条件和末尾括号的注明。
7、提公因式时可以考虑提带根号的公因式。二次根式化简方法:
二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
分母有理化:
分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:
(1)直接利用二次根式的运算法则:
例:
(2)利用平方差公式:
例:
(3)利用因式分解:
例:(此题可运用待定系数法便于分子的分解)
换元法(整体代入法):
换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。
例:在根式中,令,即可得到
原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8提公因式法:
例:计算
巧构常值代入法:
例:已知x2-3x+1=0,求的值。
分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+c=0化为x+=,即先构造一个常数,再代入求值。
解:显然x≠0,x2-3x+1=0化为x+=3。
原式==2.
考点名称:倒数
- 倒数的定义:
如果两个数的乘积等于1,那么这两个数就叫做互为倒数。 - 倒数性质:
(1)若a、b互为倒数,则ab=1,或,反之也成立;
(2)0没有倒数;
(3)乘积为-1的两个数互为负倒数,即ab=-1,则ab互为负倒数,反之也成立。
倒数的特点:
一个正实数(1除外)加上它的倒数 一定大于2。
理由:a/b,b/a为倒数当a>b时a/b一定大于1,可写为1+(a-b)/b。因为:
b/a+(a-b)/a
=b×b/a×b+(a÷b-b×b)/ab
=(a×a-b×b+b×b)/ab
=a×a/a×b,
又因为a>b,
所以a·a>a·b,
所以a·a/a·b>1,
所以1+(a-b)/b+a·a/a·b>2,
所以一个正实数加上它的倒数一定大于2。
当b>a时也一样。
同理可证,一个负实数(-1除外)加上它的倒数一定小于-2。 - 倒数的求法:
1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。
2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。 即12倒数是1/12。
说明:倒数是本身的数是1和-1。(0没有倒数)
把0.25化成分数,即1/4
再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1
再把4/1化成整数,即4
所以0.25是4的倒数。也可以说4是0.25的倒数
也可以用1去除以这个数,例如0.25
1/0.25等于4
所以0.25的倒数4.
因为乘积是1的两个数互为倒数。
分数、整数也都使不完整用这种规律。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |