知识回顾:我们在学习《二次根式》这一章时,对二次根式有意义的条件、性质和运算法则进行了探索,得到了如下结论:(1)二次根式a有意义的条件是a≥0.(2)二次根式的性质:①(a)2=a(a-数学

题文

知识回顾:我们在学习《二次根式》这一章时,对二次根式有意义的条件、性质和运算法则进行了探索,得到了如下结论:
(1)二次根式

a
有意义的条件是a≥0.
(2)二次根式的性质:①(

a
2=a(a≥0);②

a2
=|a|.
(3)二次根式的运算法则:

a
?

b
=

ab
(a≥0,b≥0);

a

b
=

a
b
(a≥0,b>0);
③a

c
±b

c
=(a±b)

c
(c≥0).
类比推广:根据探索二次根式相关知识过程中获得的经验,解决下面的问题.
(1)写出n次根式
na

(n≥3,n是整数)有意义的条件和性质;
(2)计算
3-16

+
32

题型:解答题  难度:中档

答案

(1)
na

(n≥3,n是整数)有意义的条件:
当n为偶数时,a≥0,
当n为奇数时,a为任意实数;
na

(n≥3,n是整数)的性质:
当n为偶数时,①(
na

n=a(a≥0),②|
nan

|=|a|,
当n为奇数时,①(
na

n=a,②
nan

=a;

(2)
3-16

+
32


=
3-8×2

+
32


=-2
32

+
32


=-
32

据专家权威分析,试题“知识回顾:我们在学习《二次根式》这一章时,对二次根式有意义的条件..”主要考查你对  二次根式的加减乘除混合运算,二次根式的化简  等考点的理解。关于这些考点的“档案”如下:

二次根式的加减乘除混合运算,二次根式的化简

考点名称:二次根式的加减乘除混合运算,二次根式的化简

  • 二次根式的加减乘除混合运算:
    顺序与师叔运算的顺序一样,先乘方,后乘除,最后算加减,有括号的先算括号内的。
    ①在运算过程中,多项式乘法,乘法公式和有理数(式)中的运算律在二次根式的运算中仍然适用。
    ②二次根式的加减乘除混合运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。
    ③运算结果是根式的,一般应表示为最简二次根式。
    二次根式的化简:
    先对分子、分母因式分解,能约分的就约分,能开方的就开方,或先对被开方数进行通分,然后再通过分母有理化进行化简。

  • 二次根式混合运算掌握:
    1、确定运算顺序。
    2、灵活运用运算定律。
    3、正确使用乘法公式。
    4、大多数分母有理化要及时。
    5、在有些简便运算中也许可以约分,不要盲目有理化。
    6、字母运算时注意隐含条件和末尾括号的注明。
    7、提公因式时可以考虑提带根号的公因式。

    二次根式化简方法:
    二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
    分母有理化:
    分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:
    (1)直接利用二次根式的运算法则:
    例:
    (2)利用平方差公式:
    例:
    (3)利用因式分解:
    例:(此题可运用待定系数法便于分子的分解)

    换元法(整体代入法):
    换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。
    例:在根式中,令,即可得到
    原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8

    提公因式法:
    例:计算


    巧构常值代入法:
    例:已知x2-3x+1=0,求的值。
    分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+c=0化为x+=,即先构造一个常数,再代入求值。
    解:显然x≠0,x2-3x+1=0化为x+=3。
    原式==2.