如图所示,△ABC中,AB=6厘米,BC=8厘米,∠B=90°,AB=6厘米,BC=8厘米,点P从点A开始沿AB边向B以1厘米/秒的速度移动,点Q从B点开始沿BC边向点C以2厘米/秒的速度移动.(1)如果P-数学

题文

如图所示,△ABC中,AB=6厘米,BC=8厘米,∠B=90°,AB=6厘米,BC=8厘米,点P从点A开始沿AB边向B以1厘米/秒的速度移动,点Q从B点开始沿BC边向点C以2厘米/秒的速度移动.
(1)如果P、Q分别从A、B同时出发,经过几秒,使△PBQ得面积等于8平方厘米?
(2)如果P、Q分别从A、B出发,并且P到B后又继续在BC边上前进,经过几秒,使△PCQ得面积等于12.6平方厘米?
题型:解答题  难度:中档

答案

(1)设经过x秒使△PBQ得面积等于8平方厘米,根据题意得:
1
2
×2x(6-x)=8,
整理得:(x-2)(x-4)=0,
解得:x1=2,x2=4,
答:经过2秒或4秒,使△PBQ得面积等于8平方厘米;
(2)设经x秒,点P移动到BC上,且有CP=(14-x)cm,点Q移动到CA上,且使CQ=(2x-8)cm,
过Q作QD⊥CB,垂足为D,
∵QD⊥CB,∠B=90°,
∴DQ∥AB,
∴∠CDQ=∠CAB,
∴△CQD∽△CAB,
QD
2x-8
=
AB
AC

即:QD=
6(2x-8)
10

由题意得
1
2
(14-x)?
6(2x-8)
10
=12.6,
解得:x1=7,x2=11,
经7秒,点P在BC上距离C点7cm处,点Q在CA上距离C点6cm处,使△PCQ的面积等于12.6cm2
经11秒,点P在BC上距离C点3cm处,点Q在CA上距离C点14cm处,14>10,点Q已超出CA的范围,此解不存在;
综上所述,经过7秒△PCQ的面积等于12.6cm2

据专家权威分析,试题“如图所示,△ABC中,AB=6厘米,BC=8厘米,∠B=90°,AB=6厘米,BC=8..”主要考查你对  一元二次方程的应用  等考点的理解。关于这些考点的“档案”如下:

一元二次方程的应用

考点名称:一元二次方程的应用

  • 建立一元二次方程模型进行求解,把得到的答案带回实际问题中检验是否合理,来解决实际问题,如打折、营销、增长率问题等。

  •  

  • 列一元二次次方程组解应用题的一般步骤:
    可概括为“审、设、列、解、答”五步,即:
    (1)审:是指读懂题意,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的关系;
    (2)设:是指设未知数;
    (3)列:就是列方程,这是非常重要的一步,一般先找出能够表达应用题全部含义的一个等量关系,然后列代数式表示等量关系中的各个量,就得到含有未知数的等式,即方程;
    (4)解:解这个方程,求出两个未知数的值;
    (5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
    提示:
    ①列方程解应用题时,要善于将普通语言化为数学语言,审题时,要特别注意关键词语,如“多、少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等。
    ②注重解法选择与验根,在具体问题中要注意恰当的选择解法,以保证解题过程简单流畅,特别注意要对方程的解进行检验,根据实际情况作出正确取舍,以保证结论的准确性。

    常见题型公式:
    工程问题:    
    工程问题中的三个量及其关系为:工作总量=工作效率×工作时间  
    经常在题目中未给出工作总量时,设工作总量为单位1。

    利润赢亏问题 
    销售问题中常出现的量有:进价、售价、标价、利润等 
    有关关系式:
    商品利润=商品售价—商品进价=商品标价×折扣率—商品进价 
    商品利润率=商品利润/商品进价            
    商品售价=商品标价×折扣率 

    存款利率问题:
    利息=本金×利率×期数      
    本息和=本金+利息      
    利息税=利息×税率(20%)

    行程问题:
    基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
    路程=速度×时间。
    ①相遇问题:快行距+慢行距=原距;
    ②追及问题:快行距-慢行距=原距;
    ③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,
    逆水(风)速度=静水(风)速度-水流(风)速度

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐