已知m,n为整数,方程x2+(n-2)n-1x+m+18=0有两个不相等的实数根,方程x2+(n-6)n-1x+m-37=0有两个相等的实数根.求n的最小值,并说明理由.-数学

题文

已知m,n为整数,方程x2+(n-2)

n-1
x+m+18=0有两个不相等的实数根,方程x2+(n-6)

n-1
x+m-37=0有两个相等的实数根.求n的最小值,并说明理由.
题型:解答题  难度:中档

答案

n-1
有意义,
∴n-1≥0,即n≥1,
而n为整数,所以n≥1的整数.
又∵方程x2+(n-2)

n-1
x+m+18=0有两个不相等的实数根,
∴△>0,即△=(n-2)2(n-1)-4(m+18)>0①;
又方程x2+(n-6)

n-1
x+m-37=0有两个相等的实数根,
∴△′=0,即△′=(n-6)2(n-1)-4(m-37)=0②,
①-②整理得:2n2-10n-47>0,
令2n2-10n-47=0,
解得n1=
5-

119
2
,n2=
5+

119
2

∴n<
5-

119
2
或n>
5+

119
2

而n≥1的整数,
所以n>
5+

119
2
的整数.
则n的最小整数为8,并且(8-6)2(8-1)-4(m-37)=0,
解得m=42,为整数满足条件.
所以n的最小整数为8.

据专家权威分析,试题“已知m,n为整数,方程x2+(n-2)n-1x+m+18=0有两个不相等的实数根,..”主要考查你对  一元二次方程根的判别式  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根的判别式

考点名称:一元二次方程根的判别式

  • 根的判别式:
    一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
    定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
    定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
    定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

    根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
    定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
    定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
    定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
    注意:(1)再次强调:根的判别式是指△=b2-4ac。
    (2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
    (3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
    (4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。

  • 根的判别式有以下应用:
    ①不解一元二次方程,判断根的情况。
    ②根据方程根的情况,确定待定系数的取值范围。
    ③证明字母系数方程有实数根或无实数根。
    ④应用根的判别式判断三角形的形状。
    ⑤判断当字母的值为何值时,二次三项是完全平方式。
    ⑥可以判断抛物线与直线有无公共点。
    ⑦可以判断抛物线与x轴有几个交点。
    ⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐