在一次晚会上,大家围着飞镖游戏前。只见靶子设计成如图形式。已知从里到外的三个圆的半径分别为l,2,3,并且形成A,B,C三个区域。如果飞镖没有停落在最大圆内或只停落在圆-九年级数学

首页 > 考试 > 数学 > 初中数学 > 列举法求概率/2019-05-18 / 加入收藏 / 阅读 [打印]

题文

在一次晚会上,大家围着飞镖游戏前。只见靶子设计成如图形式。已知从里到外的三个圆的半径分别为l,2,3,并且形成A,B,C三个区域。如果飞镖没有停落在最大圆内或只停落在圆周上,那么可以重新投镖。
 (1)分别求出三个区域的面积;
 (2)雨薇与方冉约定:飞镖停落在A、B区域雨薇得1分,飞镖落在C区域方冉得1分。你认为这个游戏公平吗? 为什么? 如果不公平,请你修改得分规则,使这个游戏公平。
题型:解答题  难度:中档

答案

解:(1)SA=π·12=π,SB=π·22-π·12=3π,SC=π·32-π·22=5π
(2)P(A)==,P(B)= =,P(C)=
P(雨薇得分)=
P(方冉得分)=
∵P(雨薇得分)≠P(方冉得分)
∴这个游戏不公平。
修改得分规则:飞镖停落在A区域得2分,飞镖停落在B区域、C区域得1分,这样游戏就公平了。

据专家权威分析,试题“在一次晚会上,大家围着飞镖游戏前。只见靶子设计成如图形式。已..”主要考查你对  列举法求概率,圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)  等考点的理解。关于这些考点的“档案”如下:

列举法求概率圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)

考点名称:列举法求概率

  • 可能条件下概率的意义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
    等可能条件下概率的特征:
    (1)对于每一次试验中所有可能出现的结果都是有限的;
    (2)每一个结果出现的可能性相等。

  • 概率的计算方法:
    (1)列举法(列表或画树状图),
    (2)公式法;
    列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果。

    列表法
    (1)定义:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
    (2)列表法的应用场合
    当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

    树状图法
    (1)定义:通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
    (2)运用树状图法求概率的条件
    当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。

考点名称:圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)

  • 圆和圆的位置关系:
    如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
    如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
    如果两个圆有两个公共点,那么就说这两个圆相交。

    圆心距:两圆圆心的距离叫做两圆的圆心距。

  • 圆和圆位置关系的性质与判定:
    设两圆的半径分别为R和r,圆心距为d,那么
    两圆外离d>R+r(没有交点)
    两圆外切d=R+r (有一个交点,叫切点)
    两圆相交R-r<d<R+r(R≥r)(有两个交点)
    两圆内切d=R-r(R>r) (有一个交点,叫切点)
    两圆内含d<R-r(R>r)(没有交点)

    两圆相切的性质:
    (1)连心线:两圆圆心的连线。
    (2)两圆相切的性质:相切两圆的连心线必过切点,即两圆圆心、切点三点在一条直线上。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐