在平行四边形ABCD中,若给出四个条件:(1)AB=BC,(2)∠BAD=90°,(3)AC⊥BD,(4)AC=BD,任意选择其中两个能使成为正方形的概率是______.-数学
题文
在平行四边形ABCD中,若给出四个条件:(1)AB=BC,(2)∠BAD=90°,(3)AC⊥BD,(4)AC=BD,任意选择其中两个能使成为正方形的概率是______. |
题文
在平行四边形ABCD中,若给出四个条件:(1)AB=BC,(2)∠BAD=90°,(3)AC⊥BD,(4)AC=BD,任意选择其中两个能使成为正方形的概率是______. |
题型:填空题 难度:中档
答案
四边形ABCD是平行四边形, (1)若AB=BC,则AB=BC=CD=AD,符合“有一组邻边相等的平行四边形是菱形”的判定定理,再加上∠BAD=90°时得出四边形是正方形,故此(1)(2)可以得出正方形,故此组合正确; (2)根据(1)(3)只能得出四边形是菱形,故此组合错误; (3)当(1)(4)组合,可以得出,符合“对角线相等的菱形是正方形”的判定定理,此组合正确; (4)当(2)(3)组合,可以判定此四边形是正方形,故此组合正确. (5)当(2)(4)组合,可以得出此四边形是矩形,无法判定此四边形是正方形,故此组合错误. (6)当(3)(4)组合,可以判定此四边形是正方形,故此组合正确. 故正确的有4个, 所以可推出平行四边形ABCD是正方形的概率为:
故答案为:
|
据专家权威分析,试题“在平行四边形ABCD中,若给出四个条件:(1)AB=BC,(2)∠BAD=90°,(3..”主要考查你对 列举法求概率,正方形,正方形的性质,正方形的判定 等考点的理解。关于这些考点的“档案”如下:
列举法求概率正方形,正方形的性质,正方形的判定
考点名称:列举法求概率
考点名称:正方形,正方形的性质,正方形的判定
正方形的性质:
1、边:两组对边分别平行;四条边都相等;相邻边互相垂直
2、内角:四个角都是90°;
3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;
4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴);
5、正方形具有平行四边形、菱形、矩形的一切性质;
6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;
正方形的两条对角线把正方形分成四个全等的等腰直角三角形;
7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;
正方形外接圆面积大约是正方形面积的157%。
8、正方形是特殊的长方形。
正方形的判定:
判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。
1:对角线相等的菱形是正方形。
2:有一个角为直角的菱形是正方形。
3:对角线互相垂直的矩形是正方形。
4:一组邻边相等的矩形是正方形。
5:一组邻边相等且有一个角是直角的平行四边形是正方形。
6:对角线互相垂直且相等的平行四边形是正方形。
7:对角线相等且互相垂直平分的四边形是正方形。
8:一组邻边相等,有三个角是直角的四边形是正方形。
9:既是菱形又是矩形的四边形是正方形。
有关计算公式:
若S为正方形的面积,C为正方形的周长,a为正方形的边长,则
正方形面积计算公式:S =a×a(即a的2次方或a的平方),或S=对角线×对角线÷2;
正方形周长计算公式: C=4a 。
S正方形=。(正方形边长为a,对角线长为b)
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |