一天晚上,小伟帮助妈妈清洗3个只有颜色不同的有盖茶杯,此时突然停电了,小伟只好把茶杯和茶盖随机地搭配在一起,则颜色搭配错误的概率是()A.19B.16C.56D.89-数学

首页 > 考试 > 数学 > 初中数学 > 列举法求概率/2019-05-18 / 加入收藏 / 阅读 [打印]

题文

一天晚上,小伟帮助妈妈清洗3个只有颜色不同的有盖茶杯,此时突然停电了,小伟只好把茶杯和茶盖随机地搭配在一起,则颜色搭配错误的概率是(  )
A.
1
9
B.
1
6
C.
5
6
D.
8
9
题型:单选题  难度:中档

答案

把三个茶杯和三个杯盖分别编号为A1、B1、C1和A2、B2、C2,搭配的所有情况如下表:
茶杯摆放情况A1B1C1A1C1B1B1A1C1B1C1A1C1A1B1C1B1A1
茶盖摆放情况A2B2C2A2C2B2B2A2C2B2C2A2C2A2B2C2B2A2
从表中列举可知,所有可能出现的结果有6×=36种,这些结果出现的可能性相等,搭配错误的有30种,
所以全部搭配错误的概率为
30
36
=
5
6

故选:C.

据专家权威分析,试题“一天晚上,小伟帮助妈妈清洗3个只有颜色不同的有盖茶杯,此时突然..”主要考查你对  列举法求概率  等考点的理解。关于这些考点的“档案”如下:

列举法求概率

考点名称:列举法求概率

  • 可能条件下概率的意义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
    等可能条件下概率的特征:
    (1)对于每一次试验中所有可能出现的结果都是有限的;
    (2)每一个结果出现的可能性相等。

  • 概率的计算方法:
    (1)列举法(列表或画树状图),
    (2)公式法;
    列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果。

    列表法
    (1)定义:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
    (2)列表法的应用场合
    当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

    树状图法
    (1)定义:通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
    (2)运用树状图法求概率的条件
    当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐