我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且-(a+b)2≤0.据此,我们可以得到下面的推理:∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0∴(x+1)2+2≥2,故x2+2x+3的最-数学
题文
我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且-(a+b)2≤0.据此,我们可以得到下面的推理: ∵x2+2x+3=(x2+2x+1)+2=(x+1)2+2,而(x+1)2≥0 ∴(x+1)2+2≥2,故x2+2x+3的最小值是2. 试根据以上方法判断代数式3y2-6y+11是否存在最大值或最小值?若有,请求出它的最大值或最小值. |
答案
原式=3(y-1)2+8, ∵(y-1)2≥0, ∴3(y-1)2+8≥8, ∴有最小值,最小值为8. |
据专家权威分析,试题“我们知道任何实数的平方一定是一个非负数,即:(a+b)2≥0,且-(a+b..”主要考查你对 二次函数的最大值和最小值 等考点的理解。关于这些考点的“档案”如下:
二次函数的最大值和最小值
考点名称:二次函数的最大值和最小值
- 二次函数的最值:
1.如果自变量的取值范围是全体实数,则当a>0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=;
当a<0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=。
也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,。
2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x1 时;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2时 。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:下列关于函数y=x2+2x-1的表述中正确的是()A.有最小值-2B.有最小值-1C.有最大值-2D.有最大值-1-数学
下一篇:代数式x2-2x+5的最小值为()A.-2B.1C.4D.5-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |