在Rt△ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC.(1)试写出四边形DFCE的面积S(cm2)与时间t(s)之间的函数关系式并写出自-数学

题文

在Rt△ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DE∥BC,DF∥AC.
(1)试写出四边形DFCE的面积S(cm2)与时间t(s)之间的函数关系式并写出自变量t的取值范围.
(2)试求出当t为何值时四边形DFCE的面积为20cm2
(3)四边形DFCE的面积能为40吗?如果能,求出D到A的距离;如果不能,请说明理由.
(4)四边形DFCE的面积S(cm2)有最大值吗?有最小值吗?若有,求出它的最值,并求出此时t的值.
题型:解答题  难度:中档

答案

∵在△ABC中,∠B=90°,AB=BC,
∴∠A=∠C=45°,
∵DE∥BC,DF∥AC,
∴∠AED=∠C=∠A,∠BFD=∠C=45°,∠BDF=∠A=45°,∠EDA=∠B=90°,
∴AD=DE=2t,BD=BF=12-2t
①S=
1
2
×12×12-
1
2
×2t×2t-
1
2
(12-2t)2=-4t2+24t(0≤t≤6).

②当S=20时,-4t2+24t=20,
t2-6t+5=0,
解得t1=5,t2=1;
因此当t=1s或5s时,四边形的面积为20cm2

③当S=40时,-4t2+24t=40,
t2-6t+10=0,
∵△=36-40<0,
∴四边形的面积不能为40.

④四边形面积有最大值和最小值,
S=-4t2+24t=-4(t-3)2+36;
当t=3时,有最大值36,当t=6时,有最小值0.
此时D离A点6cm,D为AB的中点.

据专家权威分析,试题“在Rt△ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B..”主要考查你对  二次函数的最大值和最小值  等考点的理解。关于这些考点的“档案”如下:

二次函数的最大值和最小值

考点名称:二次函数的最大值和最小值

  • 二次函数的最值:
    1.如果自变量的取值范围是全体实数,则当a>0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=
    当a<0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=
    也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,
    2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x1;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2 。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐