函数y=x2-4x+5(0≤x≤5)的最小值和最大值分别是______,______.-数学

题文

函数y=x2-4x+5(0≤x≤5)的最小值和最大值分别是______,______.
题型:填空题  难度:中档

答案

函数y=x2-4x+5的顶点坐标为:x=-
b
2a
=-
-4
2
=2,y=
4ac-b2
4a
=
4×5-(4)2
4
=1,即(2,1).
x=0时,y=02-4×0+5=5,即(0,5);
x=5时,y=52-4×5+5=10,即(5,10).
由函数y=x2-4x+5的图象可知,在0≤x≤5范围内,函数最小值和最大值分别是1,10.

据专家权威分析,试题“函数y=x2-4x+5(0≤x≤5)的最小值和最大值分别是______,______.-数..”主要考查你对  二次函数的最大值和最小值  等考点的理解。关于这些考点的“档案”如下:

二次函数的最大值和最小值

考点名称:二次函数的最大值和最小值

  • 二次函数的最值:
    1.如果自变量的取值范围是全体实数,则当a>0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=
    当a<0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=
    也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,
    2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x1;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2 。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐