(1)试求出奇数的四次方被16除所得的余数(最小非负剩余);(2)问:是否存在六个整数a、b、c、d、e、f,使得a4+b4+c4+d4+e4+f4=20079?请说明理由(允许利用在(1)中所得到的结论).-数学
题文
(1)试求出奇数的四次方被16除所得的余数(最小非负剩余); (2)问:是否存在六个整数a、b、c、d、e、f,使得a4+b4+c4+d4+e4+f4=20079?请说明理由(允许利用在(1)中所得到的结论). |
题文
(1)试求出奇数的四次方被16除所得的余数(最小非负剩余); (2)问:是否存在六个整数a、b、c、d、e、f,使得a4+b4+c4+d4+e4+f4=20079?请说明理由(允许利用在(1)中所得到的结论). |
题型:解答题 难度:中档
答案
(1)设a是奇数,则a=2n+1(n是整数),(1分)a4=(2n+1)4=(4n2+4n+1)2=[4n(n+1)+1]2(2分) 因为n(n+1)为偶数,所以4n(n+1)是8的倍数,(3分) 令4n(n+1)=8t(t是整数),则a4=(8t+1)2=64t2+16t+1=16?(4t2+t)+1,(4分) 即a4被16除所得的余数为1;(5分) (2)不存在.理由如下: 显然,偶数的四次方被16除的余数为0,由(1)知:奇数的四次方被16除的余数为1,而整数可划分为奇数与偶数两大类,所以a4+b4+c4+d4+e4+f4被16除的余数只可能为0、1、2、3、4、5、6.(10分) 另一方面,2007被16除的余数为7,所以20079被16除的余数就是79被16除的余数,注意到79=7×78=7×494=7×(16×3+1)4被16除的余数为7.(14分) 由以上两个方面知:a4+b4+c4+d4+e4+f4与20079被16除的余数永远不可能相同,因此所述的a、b、c、d、e、f不存在.(15分) |
据专家权威分析,试题“(1)试求出奇数的四次方被16除所得的余数(最小非负剩余);(2)问:是..”主要考查你对 有理数除法 等考点的理解。关于这些考点的“档案”如下:
有理数除法
考点名称:有理数除法
有理数的除法法则:
(1)除以一个数,等于乘上这个数的倒数;
(2)两个数相除,同号得正,异号得负,并把绝对值相除;
(3)0除以任何一个不等于0的数都等于0。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |