(1)试求出奇数的四次方被16除所得的余数(最小非负剩余);(2)问:是否存在六个整数a、b、c、d、e、f,使得a4+b4+c4+d4+e4+f4=20079?请说明理由(允许利用在(1)中所得到的结论).-数学

首页 > 考试 > 数学 > 初中数学 > 有理数除法/2019-02-16 / 加入收藏 / 阅读 [打印]

题文

(1)试求出奇数的四次方被16除所得的余数(最小非负剩余);
(2)问:是否存在六个整数a、b、c、d、e、f,使得a4+b4+c4+d4+e4+f4=20079?请说明理由(允许利用在(1)中所得到的结论).
题型:解答题  难度:中档

答案

(1)设a是奇数,则a=2n+1(n是整数),(1分)a4=(2n+1)4=(4n2+4n+1)2=[4n(n+1)+1]2(2分)
因为n(n+1)为偶数,所以4n(n+1)是8的倍数,(3分)
令4n(n+1)=8t(t是整数),则a4=(8t+1)2=64t2+16t+1=16?(4t2+t)+1,(4分)
即a4被16除所得的余数为1;(5分)
(2)不存在.理由如下:
显然,偶数的四次方被16除的余数为0,由(1)知:奇数的四次方被16除的余数为1,而整数可划分为奇数与偶数两大类,所以a4+b4+c4+d4+e4+f4被16除的余数只可能为0、1、2、3、4、5、6.(10分)
另一方面,2007被16除的余数为7,所以20079被16除的余数就是79被16除的余数,注意到79=7×78=7×494=7×(16×3+1)4被16除的余数为7.(14分)
由以上两个方面知:a4+b4+c4+d4+e4+f4与20079被16除的余数永远不可能相同,因此所述的a、b、c、d、e、f不存在.(15分)

据专家权威分析,试题“(1)试求出奇数的四次方被16除所得的余数(最小非负剩余);(2)问:是..”主要考查你对  有理数除法  等考点的理解。关于这些考点的“档案”如下:

有理数除法

考点名称:有理数除法

  • 有理数除法定义:
    已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。

  • 有理数的除法法则:
    (1)除以一个数,等于乘上这个数的倒数;
    (2)两个数相除,同号得正,异号得负,并把绝对值相除;
    (3)0除以任何一个不等于0的数都等于0。

  • 有理数除法注意:
    ①0不能做除数;
    ②有理数的除法和乘法是互逆运算;
    ③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。