绕圆周填写了十二个正整数,其中每个数取自{1,2,3,4,5,6,7,8,9}之中(每一个数都可以多次出现在圆周上),若圆周上任何三个相邻位置上的数之和都是7的倍数,用S表示圆-数学

首页 > 考试 > 数学 > 初中数学 > 有理数除法/2019-02-16 / 加入收藏 / 阅读 [打印]

题文

绕圆周填写了十二个正整数,其中每个数取自{1,2,3,4,5,6,7,8,9}之中(每一个数都可以多次出现在圆周上),若圆周上任何三个相邻位置上的数之和都是7的倍数,用S表示圆周上所有十二个数的和,那么数S所有可能的取值情况有______种.
题型:填空题  难度:中档

答案

对于圆周上相邻的三个数{ak,ak+1,ak+2},ak+ak+1+ak+2可以是7,或14,或21,例如,当三数和为7时,{ak,ak+1,ak+2}可以取{1,2,4}或{1,1,5}或{2,2,3};又对于圆周上任意相邻的四数,若顺次为ak,ak+1,ak+2,ak+3,由于ak+ak+1+ak+2和ak+1+ak+2+ak+3都是7的倍数,那么必有7|ak+3-ak,于是ak与ak+3或者相等,或者相差7;
又在圆周上,1与8可互换,2与9可互换;现将圆周分成四段,每段三个数的和皆可以是7,或14,或21,因此四段的总和可以取到{28,35,42,49,56,63,70,77,84}中的任一个值,总共九种情况.
(其中的一种填法是:先在圆周上顺次填出十二个数:1,2,4,1,2,4,1,2,4,1,2,4,其和为28,然后每次将一个1改成8,或者将一个2改成9,每一次操作都使得总和增加7,而这样的操作可以进行八次).

据专家权威分析,试题“绕圆周填写了十二个正整数,其中每个数取自{1,2,3,4,5,6,7..”主要考查你对  有理数除法  等考点的理解。关于这些考点的“档案”如下:

有理数除法

考点名称:有理数除法

  • 有理数除法定义:
    已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。

  • 有理数的除法法则:
    (1)除以一个数,等于乘上这个数的倒数;
    (2)两个数相除,同号得正,异号得负,并把绝对值相除;
    (3)0除以任何一个不等于0的数都等于0。

  • 有理数除法注意:
    ①0不能做除数;
    ②有理数的除法和乘法是互逆运算;
    ③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐