下列计算中,正确的是()A.(-a2)2=a6B.a6÷a3=a2C.a+b-a-b=-1D.1a+12a=13a-数学
题文
下列计算中,正确的是( )
|
答案
A、(-a2)2=a4,故本选项错误; B、a6÷a3=a6-3=a3,故本选项错误; C、原式=
D、原式=
故选C. |
据专家权威分析,试题“下列计算中,正确的是()A.(-a2)2=a6B.a6÷a3=a2C.a+b-a-b=-1D.1a+..”主要考查你对 有理数除法,有理数的乘方,分式的基本性质 ,分式的加减 等考点的理解。关于这些考点的“档案”如下:
有理数除法有理数的乘方分式的基本性质 分式的加减
考点名称:有理数除法
- 有理数除法定义:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。 有理数的除法法则:
(1)除以一个数,等于乘上这个数的倒数;
(2)两个数相除,同号得正,异号得负,并把绝对值相除;
(3)0除以任何一个不等于0的数都等于0。- 有理数除法注意:
①0不能做除数;
②有理数的除法和乘法是互逆运算;
③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。
考点名称:有理数的乘方
- 有理数乘方的定义:
求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
①习惯上把22叫做2的平方,把23叫做2的立方;
②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。 - 乘方的性质:
乘方是乘法的特例,其性质如下:
(1)正数的任何次幂都是正数;
(2)负数的偶次幂是正数,负数的奇次幂是负数;
(3)0的任何(除0以外)次幂都是0;
(4)a2是一个非负数,即a2≥0。 - 有理数乘方法则:
①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0
点拨:
①0的次幂没意义;
②任何有理数的偶次幂都是非负数;
③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
④负数的乘方与乘方的相反数不同。 - 乘方示意图:
考点名称:分式的基本性质
- 分式的基本性质:
分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
即,(C≠0),其中A、B、C均为整式。 - 分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。
分式的约分步骤:
(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去;
(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
通分:根据分式的基本性质,把分子、分母同时乘以适当的整式,把几个异分母的分式转化为与原来的分式相等的同分母的分式,叫做分式的通分。 分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母;同时各分式按照分母所扩大的倍数,相应扩大各自的分子.
考点名称:分式的加减
- 分式的加减法则:
同分母的分式相加减,分母不变,把分子相加减;
异分母的分式相加减,先通分,变为同分母分式,然后再加减。
用式子表示为: - 分式的加减要求:
①分式的加减运算结果必须是最简分式或整式,运算中要适时地约分;
②如果一个分式与一个整式相加减,那么可以把整式看成是分母为1的分式,先通分,再进行加减。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:下列计算正确的是()A.a2+a4=a6B.2a+3b=5abC.(a2)3=a6D.a6÷a3=a2-数学
下一篇:下列运算正确的是()A.a-2a=aB.(-a2)3=-a6C.x6÷x3=x2D.(x+y)2=x2+y2-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |