已知a,b,c为实数,且多项式x3+ax2+bx+c能够被x2+3x-4整除.(1)求4a+c的值;(2)求2a-2b-c的值.-数学

首页 > 考试 > 数学 > 初中数学 > 有理数除法/2019-02-16 / 加入收藏 / 阅读 [打印]

题文

已知a,b,c为实数,且多项式x3+ax2+bx+c能够被x2+3x-4整除.
(1)求4a+c的值;
(2)求2a-2b-c的值.
题型:解答题  难度:中档

答案

(1)∵x2+3x-4是x3+ax2+bx+c的一个因式,
∴x2+3x-4=0,即x=-4,x=1是方程x3+ax2+bx+c=0的解,

a+b+c=-1①
16a-4b+c=64②

①×4+②得4a+c=12③;
(2)由③得a=3-
c
4
,④
代入①得b=-4-
3c
4
⑤,
∴2a-2b-c=2(3-
c
4
)-2(-4-
3c
4
)-c=14;

据专家权威分析,试题“已知a,b,c为实数,且多项式x3+ax2+bx+c能够被x2+3x-4整除.(1)求..”主要考查你对  有理数除法  等考点的理解。关于这些考点的“档案”如下:

有理数除法

考点名称:有理数除法

  • 有理数除法定义:
    已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。

  • 有理数的除法法则:
    (1)除以一个数,等于乘上这个数的倒数;
    (2)两个数相除,同号得正,异号得负,并把绝对值相除;
    (3)0除以任何一个不等于0的数都等于0。

  • 有理数除法注意:
    ①0不能做除数;
    ②有理数的除法和乘法是互逆运算;
    ③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐