(1)已知:5|(x+9y)(x,y为整数),求证:5|(8x十7y).(2)试证:每个大于6的自然数n都可表示为两个大于1且互质的自然数之和.-数学

首页 > 考试 > 数学 > 初中数学 > 有理数除法/2019-02-16 / 加入收藏 / 阅读 [打印]

题文

(1)已知:5|(x+9y)(x,y为整数),求证:5|(8x十7y).
(2)试证:每个大于6的自然数n都可表示为两个大于1且互质的自然数之和.
题型:解答题  难度:中档

答案

证明:(1)已知5|(x+9y)(x,y为整数),
8x+7y=8x+72y-65y=8(x+9y)-65y,
因为已知5|(x+9y)(x,y为整数),65y也能被5整出.
故:5|(8x十7y).

(2)①若n为奇数,设n=2k+1,k为大于2的整数,则写 n=k+(k+1),由于显然(k,k+1)=1,故此表示合乎要求.
②若n为偶数,则可设n=4k或4k+2,k为大于1的自然数.
当n=4k时,可写n=(2k-1)+(2k+1),并且易知2k-1与2k+1互质,
因为,若它们有公因子d≥2,则d|2,但2k-1与2k+1均为奇数,此不可能.
当n=4k+2时,可写n=(2k-1)+(2k+3),并且易知2k-1与2k+3互质,
因为,若它们有公因子d≥2,设2k-1=pd,2k+3=qd,p、q均为自然数,则得(q-p)d=4,可见d|4,矛盾.
故:每个大于6的自然数n都可表示为两个大于1且互质的自然数之和.

据专家权威分析,试题“(1)已知:5|(x+9y)(x,y为整数),求证:5|(8x十7y).(2)试证:每个大..”主要考查你对  有理数除法  等考点的理解。关于这些考点的“档案”如下:

有理数除法

考点名称:有理数除法

  • 有理数除法定义:
    已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。

  • 有理数的除法法则:
    (1)除以一个数,等于乘上这个数的倒数;
    (2)两个数相除,同号得正,异号得负,并把绝对值相除;
    (3)0除以任何一个不等于0的数都等于0。

  • 有理数除法注意:
    ①0不能做除数;
    ②有理数的除法和乘法是互逆运算;
    ③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。