如图,四边形ABCO是矩形,点A(3,0),B(3,4),动点M、N分别从点O、B出发,都以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NP∥OC,交AC于-九年级数学

题文

如图,四边形ABCO是矩形,点A(3,0),B(3,4),动点M、N分别从点O、B出发,都以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NP∥OC,交AC于点P,连结MP,已知动点运动了x秒,△MPA的面积为S。
(1)求点P的坐标。(用含x的代数式表示)
(2)写出S关于x的函数关系式,并求出S的最大值。
(3)当△APM与△ACO相似时,点P的位置有几种情况?选择一种,并求出点P的坐标。
(4)△PMA能否成为轴对称图形?如能,求出所有点P的坐标;如不能,说明理由。
题型:解答题  难度:偏难

答案

解: (1)延长NP交x轴于点D。DA=x,OD=3-x, ∴△PDA∽△COA,
∴PD=x  ∴P(3-x,x)
(2)S=(3-x)·x=-x2+2x
∴由顶点坐标公式可求顶点()   ∴当x=,S最大值=
(3)有三种情况
当△APM∽△ACO时,3-x=x,∴x=,∴p(,2)
(4)当PA=PM时, 3-x-x=x, ∴x=1 ∴P(2, )
当PA=AM时,PA=x,∴3-x=x,∴x=,∴P(
当PM=AM时,PM2=(3-2x)2+(x)2
∴(3-2x)2+(x)2=(3-2x)2
∴x=0或x=,∴P(3,0)或P(
∴P1(2, ),P2),P3(3,0),P4

据专家权威分析,试题“如图,四边形ABCO是矩形,点A(3,0),B(3,4),动点M、N分别从点..”主要考查你对  求二次函数的解析式及二次函数的应用,轴对称,相似三角形的性质  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用轴对称相似三角形的性质

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐