如图,四边形ABCO是矩形,点A(3,0),B(3,4),动点M、N分别从点O、B出发,都以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NP∥OC,交AC于-九年级数学
题文
如图,四边形ABCO是矩形,点A(3,0),B(3,4),动点M、N分别从点O、B出发,都以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NP∥OC,交AC于点P,连结MP,已知动点运动了x秒,△MPA的面积为S。 (1)求点P的坐标。(用含x的代数式表示) (2)写出S关于x的函数关系式,并求出S的最大值。 (3)当△APM与△ACO相似时,点P的位置有几种情况?选择一种,并求出点P的坐标。 (4)△PMA能否成为轴对称图形?如能,求出所有点P的坐标;如不能,说明理由。 |
答案
解: (1)延长NP交x轴于点D。DA=x,OD=3-x, ∴△PDA∽△COA, |
据专家权威分析,试题“如图,四边形ABCO是矩形,点A(3,0),B(3,4),动点M、N分别从点..”主要考查你对 求二次函数的解析式及二次函数的应用,轴对称,相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用轴对称相似三角形的性质
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |