如图,正方形ABCD的边长是1,点E是AD边上的点,它从点A沿AD向点D运动,以BE为边,在BE的上方作正方形BEFG,连结CG。请探究:(1)线段AE与CG是否相等?请说明理由。(2)若设AE=x,-九年级数学
2.巧用顶点式:
顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.
①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。
例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。
点拨:
解∵顶点坐标为(-1,-2),
故设二次函数解析式为y=a(x+1)2-2 (a≠0)。
把点(1,10)代入上式,得10=a·(1+1)2-2。
∴a=3。
∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。
②典型例题二:
如果a>0,那么当 时,y有最小值且y最小=;
如果a<0,那么,当时,y有最大值,且y最大=。
告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。
例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。
点拨:
析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。
由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。
∴抛物线的顶点为(4,-3)且过点(1,0)。
故可设函数解析式为y=a(x-4)2-3。
将(1,0)代入得0=a(1-4)2-3, 解得a=13.
∴y=13(x-4)2-3,即y=13x2-83x+73。
③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。
例如:
(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式.
(2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式.
(3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式.
(4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.
④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。
例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。
点拨:
解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。
∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,
∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
考点名称:全等三角形的性质
- 全等三角形:
两个全等的三角形,而该两个三角形的三条边及三个角都对应地相等。全等三角形是几何中全等的一种。根据全等转换,两个全等三角形可以是平移、旋转、轴对称,或重叠等。当两个三角形的对应边及角都完全相对时,该两个三角形就是全等三角形。正常来说,验证两个全等三角形时都以三个相等部分来验证,最后便能得出结果。
全等三角形的对应边相等,对应角相等。
①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
②全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
③有公共边的,公共边一定是对应边;
④有公共角的,角一定是对应角;
⑤有对顶角的,对顶角一定是对应角。 全等三角形的性质:
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.全等三角形的对应边上的高对应相等。
4.全等三角形的对应角的角平分线相等。
5.全等三角形的对应边上的中线相等。
6.全等三角形面积相等。
7.全等三角形周长相等。
8.全等三角形的对应角的三角函数值相等。
考点名称:相似三角形的判定
- 相似三角形:
对应角相等,对应边成比例的两个三角形叫做相似三角形。
互为相似形的三角形叫做相似三角形。
例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C' 相似三角形的判定:
1.基本判定定理
(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)
(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)
(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
2.直角三角形判定定理
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
3.一定相似:
(1).两个全等的三角形
(全等三角形是特殊的相似三角形,相似比为1:1)
(2).两个等腰三角形
(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)
(3).两个等边三角形
(两个等边三角形,三个内角都是60度,且边边相等,所以相似)
(4).直角三角形中由斜边的高形成的三个三角形。- 相似三角形判定方法:
证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
一、(预备定理)
平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)
二、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
三、如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似。
四、如果两个三角形的三组对应边成比例,那么这两个三角形相似
五(定义)
对应角相等,对应边成比例的两个三角形叫做相似三角形
六、两三角形三边对应垂直,则两三角形相似。
七、两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。
八、由角度比转化为线段比:h1/h2=Sabc
易失误
比值是一个具体的数字如:AB/EF=2
而比不是一个具体的数字如:AB/EF=2:1
考点名称:相似三角形的性质
相似三角形性质定理:
(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
(6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
(7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项
(8)c/d=a/b 等同于ad=bc.
(9)不必是在同一平面内的三角形里
①相似三角形对应角相等,对应边成比例.
②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
③相似三角形周长的比等于相似比定理推论:
推论一:顶角或底角相等的两个等腰三角形相似。
推论二:腰和底对应成比例的两个等腰三角形相似。
推论三:有一个锐角相等的两个直角三角形相似。
推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |