如图,等边△ABC的边长为6,BC在x轴上,BC边上的高线AO在y轴上,直线l绕点A转动(与线段BC没有交点),设与AB、l、x轴相切的⊙O1的半径为,与AC、l、x轴相切的⊙O2半径为。(1)求两-九年级数学

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 考点名称:直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)

    • 直线与圆的位置关系:
      直线与圆的位置关系有三种:直线与圆相交,直线与圆相切,直线与圆相离。
      (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点AB与⊙O相交,d<r;
      (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,这个唯一的公共点叫做切点。AB与⊙O相切,d=r。
      (3)相离:直线和圆没有公共点时,叫做直线和圆相离,AB与圆O相离,d>r。(d为圆心到直线的距离)

    • 直线与圆的三种位置关系的判定与性质:
      (1)数量法:通过比较圆心O到直线距离d与圆半径的大小关系来判定,
      如果⊙O的半径为r,圆心O到直线l的距离为d,则有:
      直线l与⊙O相交d<r;
      直线l与⊙O相切d=r;
      直线l与⊙O相离d>r;
      (2)公共点法:通过确定直线与圆的公共点个数来判定。
      直线l与⊙O相交d<r2个公共点;
      直线l与⊙O相切d=r有唯一公共点;
      直线l与⊙O相离d>r无公共点 。

      圆的切线的判定和性质   
      (1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
      (2)切线的性质定理:圆的切线垂直于经过切点的半径。

      切线长:
      在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
      切线长定理:
      从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

    • 直线与圆的位置关系判定方法:
      平面内,直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0的位置关系判断一般方法是:
      1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x2+y2+Dx+Ey+F=0,即成为一个关于x的方程
      如果b2-4ac>0,则圆与直线有2交点,即圆与直线相交。
      如果b2-4ac=0,则圆与直线有1交点,即圆与直线相切。
      如果b2-4ac<0,则圆与直线有0交点,即圆与直线相离。

      2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x2+y2+Dx+Ey+F=0化为(x-a)2+(y-b)2=r2
      令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么: 
      当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;
      当x1<x=-C/A<x2时,直线与圆相交。 

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐