已知抛物线L;y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,,与y轴的交点是M(0,c)我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为-九年级数学

题文

已知抛物线L;y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c)我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线。
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的关系式:
伴随抛物线的关系式_________________;
伴随直线的关系式___________________;
(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3, 则这条抛物线的关系是___________;
(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0) 的伴随抛物线和伴随直线的关系式;
(4)若抛物线L与x轴交于A(x1,0),B(x2,0)两点x2>x1>0,它的伴随抛物线与x 轴交于C,D两点,且AB=CD,请求出a、b、c应满足的条件。
题型:解答题  难度:偏难

答案

解:(1)y=-2x2+1,y=-2x+1;
(2)y=x2-2x-3
(3)∵伴随抛物线的顶点是(0,c),
∴设它的解析式为y=m(x-0)2+c(m≠0)。
∴设抛物线过P
=
解得m=-a,
∴伴随抛物线关系式为y=-ax2+c。
设伴随直线关系式为y=kx+c(k≠0)
∵P在此直线上,

∴k=
∴伴随直线关系式为y=x+c
(4)∵抛物线L与x轴有两交点,
∴△1=b2-4ac>0,
∴b2<4ac。
∵x2>x1>0,
∴x1+ x2= ->0,x1x2=>0,
∴ab<0,ac>0。
对于伴随抛物线y=-ax2+c,有△2=02-(-4ac)=4ac>0。由-ax2+c=0,得x=

∴CD=2
又AB=x2-x1==
由AB=CD,得=2
整理得b2=8ac,综合b2>4ac,ab<0,ac>0,b2=8ac,
得a,b,c满足的条件为b2=8ac且ab<0,(或b2=8ac且bc<0)。

据专家权威分析,试题“已知抛物线L;y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐..”主要考查你对  求二次函数的解析式及二次函数的应用,求一次函数的解析式及一次函数的应用,二次函数的图像  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用求一次函数的解析式及一次函数的应用二次函数的图像

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐