如图(1)所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tan∠OAC=2。(1)求抛物线对应的二次函数的解析式;(2)在抛物线的对称轴l上是否存在点P,使∠-九年级数学

题文

如图(1)所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tan∠OAC=2。
(1)求抛物线对应的二次函数的解析式;
(2)在抛物线的对称轴l上是否存在点P,使∠APC=90°,若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2)所示,连接BC,M是线段BC上(不与B、C重合)的一个动点,过点M作直线l′∥l,交抛物线于点N,连接CN、BN,设点M的横坐标为t.当t为何值时,△BCN的面积最大?最大面积为多少?


图1                                                           图2

题型:解答题  难度:偏难

答案

解:(1)∵抛物线y=x2+bx+c过点C(0,2),
∴x=2
又∵tan∠OAC==2,
∴OA=1,即A(1,0),
又∵点A在抛物线y=x2+bx+2上,
∴0=12+b×1+2,b=-3
∴抛物线对应的二次函数的解析式为y=x2-3x+2;
(2)存在,
过点C作对称轴l的垂线,垂足为D,如图所示,
∴x=-
∴AE=OE-OA=-1=
∵∠APC=90°,
∴tan∠PAE= tan∠CPD


解得PE=或PE=
∴点P的坐标为()或()。(备注:可以用勾股定理或相似解答)
(3)如图,易得直线BC的解析式为:y=-x+2,
∵点M是直线l′和线段BC的交点,
∴M点的坐标为(t,-t+2)(0<t<2)
∴MN=-t+2-(t2-3t+2)=-t2+2t
∴S△BCM=S△MNC+S△MNB=MN·t+MN·(2-t)=MN·(t+2-t)=MN=-t2+2t(0<t<2),
∴S△BCN=-t2+2t=-(t-1)2+1
∴当t=1时,S△BCN的最大值为1。

据专家权威分析,试题“如图(1)所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(..”主要考查你对  求二次函数的解析式及二次函数的应用,解直角三角形  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用解直角三角形

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐