△ABC中,∠C=90°,∠A=60°,AC=2cm,长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合),过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运-九年级数学
题文
△ABC中,∠C=90°,∠A=60°,AC=2cm,长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合),过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts。 |
(1)若△AMP的面积为y,写出y与t的函数关系式(写出自变量t的取值范围); (2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由; (3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似? |
答案
解:(1)当点P在AC上时,∵ ∴ ∴ 当点P在BC上时, 。 (2)∵ ∴ ∴ ∴ 由条件知,若四边形为矩形,需,即 ∴ ∴当s时,四边形为矩形。 (3)由(2)知,当s时,四边形为矩形,此时 ∴ 除此之外,当时, 此时, ∵ ∴ ∴ ∵ ∴ 又∵ ∴ ∴ ∴当s时或s时,以为顶点的三角形与相似。 |
据专家权威分析,试题“△ABC中,∠C=90°,∠A=60°,AC=2cm,长为1cm的线段MN在△ABC的边AB上..”主要考查你对 求二次函数的解析式及二次函数的应用,矩形,矩形的性质,矩形的判定,相似三角形的判定 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用矩形,矩形的性质,矩形的判定相似三角形的判定
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,圆B切y轴于原点O,过定点A(-,0)作圆B的切线交圆于点P,已知tan∠PAB=,抛物线C经过A、P两点。(1)求圆B的半径;(2)若抛物线C经过点B,求其解析式;(3)设抛物线C交y轴于-九年级数学
下一篇:已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-3),与x轴交于A,B两点,A(-1,0)。(1)求这条抛物线的解析式;(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |