如图,已知直线交坐标轴于A、B点,以线段AB为边向上作正方形ABCD,过点A、D、C的抛物线与直线的另一个交点为E。(1)填空:点A的坐标为______,点B的坐标为______,AB的长为___-九年级数学


全等三角形的对应边相等,对应角相等。
①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
②全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
③有公共边的,公共边一定是对应边;
④有公共角的,角一定是对应角;
⑤有对顶角的,对顶角一定是对应角。

  • 全等三角形的性质:
    1.全等三角形的对应角相等。
    2.全等三角形的对应边相等。
    3.全等三角形的对应边上的高对应相等。
    4.全等三角形的对应角的角平分线相等。
    5.全等三角形的对应边上的中线相等。
    6.全等三角形面积相等。
    7.全等三角形周长相等。
    8.全等三角形的对应角的三角函数值相等。

  •  

  • 考点名称:相似三角形的性质

    • 相似三角形性质定理:
      (1)相似三角形的对应角相等。
      (2)相似三角形的对应边成比例。
      (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
      (4)相似三角形的周长比等于相似比。
      (5)相似三角形的面积比等于相似比的平方。
      (6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方
      (7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项
      (8)c/d=a/b 等同于ad=bc.
      (9)不必是在同一平面内的三角形里
      ①相似三角形对应角相等,对应边成比例.
      ②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
      ③相似三角形周长的比等于相似比

      定理推论:
      推论一:顶角或底角相等的两个等腰三角形相似。
      推论二:腰和底对应成比例的两个等腰三角形相似。
      推论三:有一个锐角相等的两个直角三角形相似。
      推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
      推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
      推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐