如图,抛物线的顶点坐标是,且经过点A(8,14).(1)求该抛物线的解析式;(2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标;(3)设点P-九年级数学


|a|越大,则二次函数图像的开口越小。

  • 决定对称轴位置的因素:
    一次项系数b和二次项系数a共同决定对称轴的位置。
    当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
    当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
    可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
    事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

    决定与y轴交点的因素:

    常数项c决定二次函数图像与y轴交点。
    二次函数图像与y轴交于(0,C)
    注意:顶点坐标为(h,k), 与y轴交于(0,C)。

    与x轴交点个数:
    a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
    k=0时,二次函数图像与x轴只有1个交点。
    a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
    当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
    当a<0时,函数在x=h处取得最大值ymax=k,在x<h范围内是增函数,在x>h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k
    当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。

  • 考点名称:三角形的三边关系

    • 三角形的三边关系:
      在三角形中,任意两边和大于第三边,任意两边差小于第三边。
      设三角形三边为a,b,c

      a+b>c
      a+c>b
      b+c>a
      a-b<c
      a-c<b
      b-c<a
      在直角三角形中,设a、b为直角边,c为斜边。
      则两直角边的平方和等于斜边平方。
      在等边三角形中,a=b=c
      在等腰三角形中, a,b为两腰,则a=b
      在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc

    • 三角形的三边关系定理及推论:
      (1)三角形三边关系定理:三角形的两边之和大于第三边。
      推论:三角形的两边之差小于第三边。
      (2)三角形三边关系定理及推论的作用:
      ①判断三条已知线段能否组成三角形;
      ②当已知两边时,可确定第三边的范围;
      ③证明线段不等关系。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐