已知:关于x的二次函数y=-x2+(m+2)x-m.(1)求证:不论m为任何实数,二次函数的图象的顶点P总是在x轴的上方;(2)设二次函数图象与y轴交于A,过点A作x轴的平行线与图象交于另外一-数学

  • 二次函数与一元二次方程的关系:
    函数y=ax2+bx+c(a≠0),当y=0时,得到一元二次方程ax2+bx+c=0(a≠0)。
    那么一元二次方程的解就是二次函数图像与x轴焦点的横坐标,因此,二次函数图像与x轴的交点情况决定一元二次方程根的情况。
    1、从形式上看:
    二次函数:y=ax2+bx+c  (a≠0)
    一元二次方程:ax2+bx+c=0  (a≠0)
    2、从内容上看:
    二次函数表示的是一对(x,y)之间的关系,它有无数对解;一元二次方程表示的是未知数x的值,最多只有2个值
    3、相互关系:
    二次函数与x轴交点的横坐标就是相应的一元二次方程的根。
    如:y=x2-4x+3与x轴的交点是(1,0)、(3,0),则一元二次方程x2-4x+3=0的根是x=1或x=3

  • 二次函数交点与二次方程根的关系:
    抛物线y=ax2+bx+c与x轴的交点个数可由一元二次方程ax2+bx+c=0的根的情况说明:
    1、若△>0,则一元二次方程ax2+bx+c=0有两个不等的实数根,则抛物线y=ax2+bx+c与x轴有两个交点---相交;
    2、若△=0,则一元二次方程ax2+bx+c=0有两个相等的实数根,则抛物线y=ax2+bx+c与x轴有唯一公共点---相切(顶点);
    3、若△<0,则一元二次方程ax2+bx+c=0没有实数根,则抛物线y=ax2+bx+c与x轴没有公共点--相离。
    若抛物线y=ax2+bx+c与轴的两个交点坐标分别是A(x1,0),B(x2,0),则x1+x2=-,x1x2=

  • 点拨:
    ①解一元二次方程实质上就是求当二次函数值为0时的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。
    ②若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2(x1<x2),则抛物线y=ax2+bx+c与x轴的交点为(x1,0),(x2,0),对称轴为x=x1+x2/2。
    ③若a>0,当x<x1,或x>x2时,y>0;当x1<x<x2时,y<0。
    若a< 0,当x1<x<x2时,y>0;当x<x1或x>x2时,y<0。
    ④如果抛物线y=ax2+bx+c与x轴交于M(x1,0),N(x2,0),则MN=√b2-4ac/|a|。

  • 考点名称:等边三角形

    • 等边三角形定义:
      三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
      如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
      1.三边长度相等;
      2.三个内角度数均为60度;
      3.一个内角为60度的等腰三角形。

    • 性质:
      ①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
      ②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
      ③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
      ④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
      ⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)

    • 判定方法:
      ①三边相等的三角形是等边三角形(定义)
      ②三个内角都相等(为60度)的三角形是等边三角形
      ③有一个角是60度的等腰三角形是等边三角形
      ④ 两个内角为60度的三角形是等边三角形
      说明:可首先考虑判断三角形是等腰三角形。

      等边三角形的性质与判定理解:
      首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
      其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

      等比三角形的尺规做法:
      可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐