已知关于x的方程mx2-(3m-1)x+2m-2=0.(1)求证:无论m取任何实数时,方程恒有实数根;(2)若关于x的二次函数y=mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析-数学
题文
已知关于x的方程mx2-(3m-1)x+2m-2=0. (1)求证:无论m取任何实数时,方程恒有实数根; (2)若关于x的二次函数y=mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式; (3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围. |
答案
(1)分两种情况讨论. ①当m=0时,方程为x-2=0,x=2. ∴m=0时,方程有实数根. ②当m≠0时,则一元二次方程的根的判别式 △=[-(3m-1)]2-4m(2m-2) =9m2-6m+1-8m2+8m=m2+2m+1 =(m+1)2≥0, ∴m≠0时,方程有实数根. 故无论m取任何实数时,方程恒有实数根. 综合①②可知,m取任何实数,方程mx2-(3m-1)x+2m-2=0恒有实数根; (2)设x1,x2为抛物线y=mx2-(3m-1)x+2m-2与x轴交点的横坐标, 则x1+x2=
由|x1-x2|=
=
=
=
=|
由|x1-x2|=2,得|
∴
∴m=1或m=-
∴所求抛物线的解析式为y1=x2-2x, y2=-
其图象如右图所示: (3)在(2)的条件下y=x+b与抛物线 y1,y2组成的图象只有两个交点,结合图象求b的取值范围. |