已知抛物线y=x2-2x-3与x轴相交于A、B两点,抛物线上有一点P,且△ABP的面积为6.(1)求A与B的坐标;(2)求点P的坐标.-数学

题文

已知抛物线y=x2-2x-3与x轴相交于A、B两点,抛物线上有一点P,且△ABP的面积为6.
(1)求A与B的坐标;
(2)求点P的坐标.
题型:解答题  难度:中档

答案

(1)∵y=x2-2x-3=(x+1)(x-3)
∴A(-1,0),B(3,0);

(2)设点P的坐标是(x,y).则由题意,得
S△ABP=
1
2
AB?|y|=
1
2
×4?|y|=6,
解得,|y|=3.
①当y=-3时,当y=3时,x2-2x-3=-3,即x2-2x=0,
解得x1=,x2=2.则P1(0,-3),P2(2,-3);
②当y=3时,x2-2x-3=3,即x2-2x-6=0,
解得x1=1+

7
,x2=1-

7

则P3(1+

7
,3),P4(1-

7
,3).
综上所述,符号条件的点P的坐标分别是:P1(0,-3),P2(2,-3),P3(1+

7
,3),P4(1-

7
,3).

据专家权威分析,试题“已知抛物线y=x2-2x-3与x轴相交于A、B两点,抛物线上有一点P,且△..”主要考查你对  二次函数与一元二次方程  等考点的理解。关于这些考点的“档案”如下:

二次函数与一元二次方程

考点名称:二次函数与一元二次方程

  • 二次函数与一元二次方程的关系:
    函数y=ax2+bx+c(a≠0),当y=0时,得到一元二次方程ax2+bx+c=0(a≠0)。
    那么一元二次方程的解就是二次函数图像与x轴焦点的横坐标,因此,二次函数图像与x轴的交点情况决定一元二次方程根的情况。
    1、从形式上看:
    二次函数:y=ax2+bx+c  (a≠0)
    一元二次方程:ax2+bx+c=0  (a≠0)
    2、从内容上看:
    二次函数表示的是一对(x,y)之间的关系,它有无数对解;一元二次方程表示的是未知数x的值,最多只有2个值
    3、相互关系:
    二次函数与x轴交点的横坐标就是相应的一元二次方程的根。
    如:y=x2-4x+3与x轴的交点是(1,0)、(3,0),则一元二次方程x2-4x+3=0的根是x=1或x=3

  • 二次函数交点与二次方程根的关系:
    抛物线y=ax2+bx+c与x轴的交点个数可由一元二次方程ax2+bx+c=0的根的情况说明:
    1、若△>0,则一元二次方程ax2+bx+c=0有两个不等的实数根,则抛物线y=ax2+bx+c与x轴有两个交点---相交;
    2、若△=0,则一元二次方程ax2+bx+c=0有两个相等的实数根,则抛物线y=ax2+bx+c与x轴有唯一公共点---相切(顶点);
    3、若△<0,则一元二次方程ax2+bx+c=0没有实数根,则抛物线y=ax2+bx+c与x轴没有公共点--相离。
    若抛物线y=ax2+bx+c与轴的两个交点坐标分别是A(x1,0),B(x2,0),则x1+x2=-,x1x2=

  • 点拨:
    ①解一元二次方程实质上就是求当二次函数值为0时的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。
    ②若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2(x1<x2),则抛物线y=ax2+bx+c与x轴的交点为(x1,0),(x2,0),对称轴为x=x1+x2/2。
    ③若a>0,当x<x1,或x>x2时,y>0;当x1<x<x2时,y<0。
    若a< 0,当x1<x<x2时,y>0;当x<x1或x>x2时,y<0。
    ④如果抛物线y=ax2+bx+c与x轴交于M(x1,0),N(x2,0),则MN=√b2-4ac/|a|。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐