据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形-九年级数学

首页 > 考试 > 数学 > 初中数学 > 条形图/2019-12-17 / 加入收藏 / 阅读 [打印]

中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。

6、特点不同
平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。
众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有 。

7、作用不同
平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。
中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。
众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。

  • 中位数、众数的求法:
    中位数:
    ①将数据按大小顺序排列;
    ②当数据个数为奇数时,中间的那个数据就是中位数;
    当数据个数为偶数时,居于中间的两个数据的平均数才是中位数。

    众数:找出频数最多的数据,若几个数据频数最多且相同,此时众数就是这几个数据。

  • 考点名称:扇形图

    • 定义
      用圆的面积代表事物总体,以扇形的面积和圆的面积的比值表示个项目占总体的百分数的统计图,叫做扇形统计图。

    • 特点:
      (1)用扇形的面积表示部分在总体中所占的百分比;
      (2)易于显示每组数据相对于总数的大小。

      作用:
      能清楚地了解各部分数与总数之间的关系与比例。

      扇形面积与其对应的圆心角的关系是:
      扇形面积越大,圆心角的度数越大。
      扇形面积越小,圆心角的度数越小。

      扇形所对圆心角的度数与百分比的关系是:
      圆心角的度数=百分比×360度
      扇形统计图还可以画成圆柱形的。

    • 制作扇形统计图的步骤:
      (1)根据统计资料,整理数据,并计算出部分占整体的百分数;
      (2)根据各部分占总体的百分数,计算出各部分扇形圆心角的度数;
      (3)取适当半径作圆,按圆心角将圆分成几个扇形;
      (4)对应标上各部分名称及占总体的百分数。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐