为了提高返乡农民工再就业能力,劳动和社会保障部门对400名返乡农民工进行了某项专业技能培训,为了解培训的效果,培训结束后随机抽取了部分参训人员进行技能测试,测试结果-九年级数学

首页 > 考试 > 数学 > 初中数学 > 条形图/2019-12-18 / 加入收藏 / 阅读 [打印]

题文

为了提高返乡农民工再就业能力,劳动和社会保障部门对400名返乡农民工进行了某项专业技能培训,为了解培训的效果,培训结束后随机抽取了部分参训人员进行技能测试,测试结果划分成“不合格”、“合格”、“良好”、“优秀”四个等级,并绘制了如图所示的统计图,
请根据统计图提供的信息,回答下列问题:
(1)培训结束后共抽取了____名参训人员进行技能测试;
(2)从参加测试的人员中随机抽取一人进行技能展示,其测试结果为“优秀”的概率为____;
(3)估计这400名参加培训的人员中,获得“优秀”的总人数大约是多少?
题型:解答题  难度:偏难

答案

解:(1)40;
(2)
(3)400×=100(人)。

据专家权威分析,试题“为了提高返乡农民工再就业能力,劳动和社会保障部门对400名返乡农..”主要考查你对  条形图,概率的意义,用样本估算总体  等考点的理解。关于这些考点的“档案”如下:

条形图概率的意义用样本估算总体

考点名称:条形图

  • 条形图定义:
    用一个单位长度表示一定的数量,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图。它可以表示出每个项目的具体数量。

  • 条形图特点:
    (1)能够显示每组中的具体数据;
    (2)易于比较数据之间的差别。

    描绘条形图的3要素:组数、组宽度、组限。
    1.组数
    把数据分成几组,指导性的经验是将数据分成5~10组。
    2.组宽度
    通常来说,每组的宽度是一致的。组数和组宽度的选择就不是独立决定的,一个经验标准是:
    近似组宽度=(最大值-最小值)/组数
    然后根据四舍五入确定初步的近似组宽度,之后根据数据的状况进行调整。
    3.组限
    分为组下限(进入该组的最小可能数据)和组上限(进入该组的最大可能数据),并且一个数据只能在一个组限内。
    绘画条形图时,不同组之间是有空隙的;而绘画直方图时,不同组之间是没有空隙的。

    使用条形图的情况:
    轴标签过长;
    显示的数值是持续型的。

  • 条形图具有下列图表子类型:
    簇状条形图和三维簇状条形图  簇状条形图比较各个类别的值。在簇状条形图中,通常沿垂直轴组织类别,而沿水平轴组织数值。三维簇状条形图以三维格式显示水平矩形,而不以三维格式显示数据。

    堆积条形图和三维堆积条形图  堆积条形图显示单个项目与整体之间的关系。三维堆积条形图以三维格式显示水平矩形,而不以三维格式显示数据。

    百分比堆积条形图和三维百分比堆积条形图  此类型的图表比较各个类别的每一数值所占总数值的百分比大小。三维百分比堆积条形图表以三维格式显示水平矩形,而不以三维格式显示数据。

    水平圆柱图、圆锥图和棱锥图  水平圆柱图、圆锥图和棱锥图可以使用为矩形条形图提供的簇状图、堆积图和百分比堆积图,并且它们以完全相同的方式显示和比较数据。唯一的区别是这些图表类型显示圆柱、圆锥和棱锥形状而不是水平矩形。

  • 制作条形图的步骤:
    (1)根据统计资料整理数据,一般整理成表格形式;
    (2)画出横轴、纵轴,确定它们所表示的项目,选定标尺,按一定比例作为长度单位,长短要适中,根据数据的大小对应标出;
    (3)画直条,条形的高与数据的大小成比例。条形的宽度、间隔要一致;
    (4)写上统计总标题、制图日期及数量单位。

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。

考点名称:用样本估算总体

  • 用样本估计总体的两个手段:
    (1)用样本的频率分布估计总体的分布;
    (2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐