“城市让生活更美好”,上海世博会吸引了全世界的目光,五湖四海的人欢聚上海,感觉世博。5月24日至5月29日参观世博会的总人数为230万,下面的统计图是每天参观人数的条形统计-九年级数学

首页 > 考试 > 数学 > 初中数学 > 条形图/2019-12-18 / 加入收藏 / 阅读 [打印]

题文

“城市让生活更美好”,上海世博会吸引了全世界的目光,五湖四海的人欢聚上海,感觉世博。5月24日至5月29日参观世博会的总人数为230万,下面的统计图是每天参观人数的条形统计图:
(1)5月25日这天的参观人数有多少万人?并补全统计图;
(2)这6天参加人数的极差是多少万人?
(3)这6天平均每天的参观人数约为多少万人?(保留三位有效数学)
(4)本届世博会会期为184天,组委会预计参观人数将达到7000万,根据上述信息,请你估计:世博会结束时参观者的总人数能否达到组委会的预期目标?
题型:解答题  难度:中档

答案

解:(1)35万,补图“略”。
(2)51-32=19万;
(3)230÷6≈38.3万;
(4)38.3×184=7047.2>7000,
估计世博会结束时,参观的总人数能达到组委会的预期目标。

据专家权威分析,试题““城市让生活更美好”,上海世博会吸引了全世界的目光,五湖四海的..”主要考查你对  条形图,极差,用样本估算总体  等考点的理解。关于这些考点的“档案”如下:

条形图极差用样本估算总体

考点名称:条形图

  • 条形图定义:
    用一个单位长度表示一定的数量,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图。它可以表示出每个项目的具体数量。

  • 条形图特点:
    (1)能够显示每组中的具体数据;
    (2)易于比较数据之间的差别。

    描绘条形图的3要素:组数、组宽度、组限。
    1.组数
    把数据分成几组,指导性的经验是将数据分成5~10组。
    2.组宽度
    通常来说,每组的宽度是一致的。组数和组宽度的选择就不是独立决定的,一个经验标准是:
    近似组宽度=(最大值-最小值)/组数
    然后根据四舍五入确定初步的近似组宽度,之后根据数据的状况进行调整。
    3.组限
    分为组下限(进入该组的最小可能数据)和组上限(进入该组的最大可能数据),并且一个数据只能在一个组限内。
    绘画条形图时,不同组之间是有空隙的;而绘画直方图时,不同组之间是没有空隙的。

    使用条形图的情况:
    轴标签过长;
    显示的数值是持续型的。

  • 条形图具有下列图表子类型:
    簇状条形图和三维簇状条形图  簇状条形图比较各个类别的值。在簇状条形图中,通常沿垂直轴组织类别,而沿水平轴组织数值。三维簇状条形图以三维格式显示水平矩形,而不以三维格式显示数据。

    堆积条形图和三维堆积条形图  堆积条形图显示单个项目与整体之间的关系。三维堆积条形图以三维格式显示水平矩形,而不以三维格式显示数据。

    百分比堆积条形图和三维百分比堆积条形图  此类型的图表比较各个类别的每一数值所占总数值的百分比大小。三维百分比堆积条形图表以三维格式显示水平矩形,而不以三维格式显示数据。

    水平圆柱图、圆锥图和棱锥图  水平圆柱图、圆锥图和棱锥图可以使用为矩形条形图提供的簇状图、堆积图和百分比堆积图,并且它们以完全相同的方式显示和比较数据。唯一的区别是这些图表类型显示圆柱、圆锥和棱锥形状而不是水平矩形。

  • 制作条形图的步骤:
    (1)根据统计资料整理数据,一般整理成表格形式;
    (2)画出横轴、纵轴,确定它们所表示的项目,选定标尺,按一定比例作为长度单位,长短要适中,根据数据的大小对应标出;
    (3)画直条,条形的高与数据的大小成比例。条形的宽度、间隔要一致;
    (4)写上统计总标题、制图日期及数量单位。

考点名称:极差

  • 极差:
    全距,又称极差,是用来表示统计资料中的变异量数,其最大值与最小值之间的差距;
    即最大值减最小值后所得之数据。
    极差是指总体各单位的标志值中,最大标志值与最小标志值之差。它是标志值变动的最大范围。极差也称为全距或范围误差,它是测定标志变动的最简单的指标。换句话说,也就是指一组数据中的最大数据与最小数据的差叫做这组数据的极差。 极差英文为range ,简写为R,表示为:R=Xmax-Xmin。移动极差(Moving Range)是其中的一种。

  • 极差特点:
    刻画数据离散程度的最简单的统计量;
    计算简单;
    不能反映中间数据的分散状况。

    移动极差:
    是指两个或多个连续样本值中最大值与最小值之差,这种差是按这样方式计算的:
    每当得到一个额外的数据点时,就在样本中加上这个新的点,同时删除其中时间上“最老的”点,然后计算与这点有关的极差,因此每个极差的计算至少与前一个极差的计算共用一个点的值。一般说来,移动极差用于单值控制图,并且通常用两点(连续的点)来计算移动极差。

    计算公式:
    极差=最大值-最小值。
    全距=最大标志值—最小标志值
    R=Xmax-Xmin
    (其中,Xmax为最大值,Xmin为最小值)
    例如 :12 12 13 14 16 21
    这组数的极差就是 :21-12=9
    例如,“早穿皮袄午穿纱”,这句话说明的气温特征数就是极差。
    方差计算公式:s2=(1/n)×[(x1-x0)2 + (x2-x0)2 +...+ (xn-x0)2](x0即为x的平均值)

  • 极差用途:
    在统计中常用极差来刻画一组数据的离散程度,以及反映的是变量分布的变异范围和离散幅度,在总体中任何两个单位的标准值之差都不能超过极差。同时,它能体现一组数据波动的范围。极差越大,离散程度越大,反之,离散程度越小。
    极差只指明了测定值的最大离散范围,而未能利用全部测量值的信息,不能细致地反映测量值彼此相符合的程度,极差是总体标准偏差的有偏估计值,当乘以校正系数之后,可以作为总体标准偏差的无偏估计值,它的优点是计算简单,含义直观,运用方便,故在数据统计处理中仍有着相当广泛的应用。 但是,它仅仅取决于两个极端值的水平,不能反映其间的变量分布情况,同时易受极端值的影响。 

考点名称:用样本估算总体

  • 用样本估计总体的两个手段:
    (1)用样本的频率分布估计总体的分布;
    (2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐