响水中学七年级9班学生小若,在学习了统计图的制作和变量的关系的知识后,想给自己制作一张反映自己学习成绩成长趋势的统计图,以了解自己学习成绩的变化趋势。于是,他请教-七年级数学
题文
响水中学七年级9班学生小若,在学习了统计图的制作和变量的关系的知识后,想给自己制作一张反映自己学习成绩成长趋势的统计图,以了解自己学习成绩的变化趋势。于是,他请教了数学老师,数学老师给了他两个建议: (1)制作什么统计图才能反映成绩的变化趋势; (2)试卷有难有易,试题难时,分数低不一定表示退步,如何才能客观地、较正确地反映自己的成绩的变化趋势? 小若回家后经过仔细思索,认为应制作( )统计图才能反映成绩的变化趋势;其次,应把自己每次考试成绩与班级平均分比较,即:每次考试成绩X减去班级平均分Y,为避免出现负分,再加上60分,称为成长分值A,用公式表示为:A=X-Y+60 这个关系式里有几个变量,因变量是( )。 小若兴冲冲地把自己的想法告诉了数学老师,数学老师高度表扬了小若,认为小若是个爱动脑筋且能活学活用、有创新意识的孩子,如果能够持之以恒,前途不可限量。小若很快从老师那儿拿到了自己的各次考试成绩,以及相应的班级各次平均分,请你帮小若算出他的各次成长分值,以及帮小若画出他的成长趋势图。 |
(3)填出上表的各章考试的成长分值,并画出小若的成长趋势图: |
(4)按照小若的成长趋势,请你预测小若第五章的成长分值A是( )分。 理由是( ) |
答案
(1)折线图; (2)成长分值A; 70 ; 75 ; 80 ; 85 ; 90; (3)图“略”; (4)95;成长分值An=A n+1-5 |
据专家权威分析,试题“响水中学七年级9班学生小若,在学习了统计图的制作和变量的关系的..”主要考查你对 折线图,变量及函数,函数的图像 等考点的理解。关于这些考点的“档案”如下:
折线图变量及函数函数的图像
考点名称:折线图
- 定义:
用一个单位长度表示一定的数量,根据数量的多少描出各点,然后用线段把各点顺次连接起来。
折线统计图不但可以表示项目的具体数量,又能清楚地反映事物变化的情况。 - 折线图特点:
易于显示数据的变化的规律和趋势。可以用来作股市的跌涨和统计气温。
折线图具有下列图表子类型:
折线图和带数据标记的折线图 折线图用于显示随时间或有序类别而变化的趋势,可能显示数据点以表示单个数据值,也可能不显示这些数据点。
在有很多数据点并且它们的显示顺序很重要时,折线图尤其有用。如果有很多类别或者数值是近似的,则应该使用不带数据标记的折线图。 - 几种折线图区别:
堆积折线图和带数据标记的堆积折线图:
堆积折线图用于显示每一数值所占大小随时间或有序类别而变化的趋势,可能显示数据点以表示单个数据值,也可能不显示这些数据点。如果有很多类别或者数值是近似的,则应该使用无数据点堆积折线图。
提示:为更好地显示此类型的数据,您可能要考虑改用堆积面积图。
百分比堆积折线图和带数据标记的百分比堆积折线图:
百分比堆积折线图用于显示每一数值所占百分比随时间或有序类别而变化的趋势。
三维折线图:三维折线图将每一行或列的数据显示为三维标记。
三维折线图具有可修改的水平轴、垂直轴和深度轴。 - 制作折线图的步骤:
(1)根据统计资料整理数据;
(2)作平面直角坐标系,横轴、纵轴都标上单位长度,取长适当;一般横轴表示时间(或先后次数),纵轴表示时间序列数据;
(3)根据数据描点。并按先后顺序将点用折线连接起来。 - 折线图制作技巧:
1.“字体”的处理
建议:取消图表的字体“自动缩放”功能,这样可防止在变动图表大小时,图表项的字体发生不必要的改变。
取消所有图表项的“自动缩放”功能,要取消所有图表项的字体“自动缩放”功能,取消图表区的“字体缩放“功能即可。可通过双击图表区,并调出“图表区格式”对话框,切换到“字体”选项卡,取消“自动缩放”前面的复选框的选择,这样便是取消了所有图表项的字体缩放功能,然后分别对各图表项的字体按需要设定字体大小。
2.“网格线”的处理
使用“折线图”或“散点图”时,尤其要注意淡化网格线对数据系列的影响,可取消网格线或是将其设为虚线,并改为浅色。
3. 数据系列格式的设置
一般不使用默认的格式设置,根据自己的需求改变“线形“或是“数据标记”及“填充”。
考点名称:变量及函数
函数:一般地,在一个变化过程中,如果有两个自变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
变量:
在一个变化过程中,我们称数值发生变化的量为变量。(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。- 变量的关系:
在具体情境中,感受两个变量之间的关系,就是一个变量随着另一个变量的变化情况,例如随着一个变量的变化,有的变量是呈匀速变化的,有的变量是呈不匀速变化的;
进而发现实际情景中的变量及其相互关系,并确定其中的自变量和因变量,会用运动变化的基本观点观察事物。也就是说,在两个有相依关系的变量中,其中一个是自变量,另一个是因变量;
自变量和因变量之间的变化关系可以用表格来刻画,也可以用图象来描述,并能对未来的趋势加以预测。 - 函数自变量的取值范围的确定:
使函数有意义的自变量的取值的全体,叫做函数自变量的取值范围.
自变量的取值范围的确定方法:
首先要考虑自变量的取值必须使解析式有意义,
①当解析式为整式时,自变量的取值范围是全体实数;
②当解析式是分数的形式时,自变量的取值范围是使分母不为零的所有实数;
③当解析式中含有平方根时,自变量的取值范围是使被开方数不小于零的实数;
④当函数解析式表示实际问题时,自变量的取值必须使实际问题有意义。
考点名称:函数的图像
函数图象的概念:
对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.- 由函数解析式画其图象的一般步骤:
①列表:列表给出自变量与函数的一些对应值;
②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |