“在一次考试中,考生有2万多名,如果为了得到这些考生的数学成绩的平均水平,若将他们的成绩全部相加再除以考生的总数,那将是十分麻烦的,那么怎样才能了解这些考生的数学平-数学

题文

“在一次考试中,考生有2万多名,如果为了得到这些考生的数学成绩的平均水平,若将他们的成绩全部相加再除以考生的总数,那将是十分麻烦的,那么怎样才能了解这些考生的数学平均成绩呢”“通常,在考生很多的情况下,我们是从中抽取部分考生(比如500名)的成绩,用他们的平均成绩去估计所有考生的平均成绩.”
在上述文字表述中,提到了调查的两种方式是______和______;反映了用样本估计总体的数学思想,其中,总体是______,样本是______,请用较简洁的语言,举一个在实际生活中,运用同种思想解决问题的例子,写在下面:______.
题型:填空题  难度:中档

答案

抽样调查,
全面调查,
2万多名考生的数学平均成绩,
500名考生的数学平均成绩,
举例答案不唯一,为了了解某市1万多名初三毕业生的数学平均成绩,从中抽取500名考生的数学成绩,用他们的平均成绩去估计所有考生的平均成绩.

据专家权威分析,试题““在一次考试中,考生有2万多名,如果为了得到这些考生的数学成绩..”主要考查你对  总体、个体、样本、样本容量,用样本估算总体  等考点的理解。关于这些考点的“档案”如下:

总体、个体、样本、样本容量用样本估算总体

考点名称:总体、个体、样本、样本容量

  • 掌握总体、个体、样本,样本容量的概念,能正确区分总体、个体、样本、样本容量
    总体、个体、样本、样本容量,这四个概念之间其实有其内在联系,
    总体:我们把所要考察的对象的全体叫做总体;
    个体:把组成总体的每一个考察对象叫做个体;
    样本:从总体中取出的一部分个体叫做这个总体的一个样本;
    样本容量:一个样本包含的个体的数量叫做这个样本的容量。
    我们在区分这四个概念时,首先找出考察的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量。

考点名称:用样本估算总体

  • 用样本估计总体的两个手段:
    (1)用样本的频率分布估计总体的分布;
    (2)用样本的数字特征估计总体的数字特征,需要从总体中抽取一个质量较高的样本,才能不会产生较大的估计偏差,且样本的容量越大,估计的结果也就越精确。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐