设m,n是给定的整数,4<m<n,A1A2…A2n+1是一个正2n+1边形,P={A1,A2,…,A2n+1}.求顶点属于P且恰有两个内角是锐角的凸m边形的个数.-数学

首页 > 考试 > 数学 > 初中数学 > 逻辑推理/2019-12-19 / 加入收藏 / 阅读 [打印]

题文

设m,n是给定的整数,4<m<n,A1A2…A2n+1是一个正2n+1边形,P={A1,A2,…,A2n+1}.求顶点属于P且恰有两个内角是锐角的凸m边形的个数.
题型:解答题  难度:中档

答案

先证一个引理:顶点在P中的凸m边形至多有两个锐角,且有两个锐角时,这两个锐角必相邻.
事实上,设这个凸m边形为P1P2Pm,只考虑至少有一个锐角的情况,此时不妨设∠PmP1P2<
π
2
,则∠P2PjPm=π-∠P2P1Pm>
π
2
(3≤j≤m-1),
更有∠Pj-1PjPj+1>
π
2
(3≤j≤m-1).
而∠P1P2P3+∠Pm-1PmP1>π,故其中至多一个为锐角,这就证明了引理.
由引理知,若凸m边形中恰有两个内角是锐角,则它们对应的顶点相邻.
在凸m边形中,设顶点Ai与Aj为两个相邻顶点,且在这两个顶点处的内角均为锐角.
设Ai与Aj的劣弧上包含了P的r条边(1≤r≤n),这样的(i,j)在r固定时恰有2n+1对.
(1)若凸m边形的其余m-2个顶点全在劣弧AiAj上,而AiAj劣弧上有r-1个P中的点,此时这m-2个顶点的取法数为Cr-1m-2
(2)若凸m边形的其余m-2个顶点全在优弧AiAj上,取Ai,Aj的对径点Bi,Bj,由于凸m边形在顶点Ai,Aj处的内角为锐角,
所以,其余的m-2个顶点全在劣弧BiBj上,而劣弧BiBj上恰有r个P中的点,此时这m-2个顶点的取法数为Crm-2
所以,满足题设的凸m边形的个数为
(2n+1)
n
r=1
(
Cm-2r-1
+
Cm-2r
)=(2n+1)(
n
r=1
Cm-2r-1
+
n
r=1
Cm-2r
)
=(2n+1)(
n
r=1
(
Cm-1r
-
Cm-1r-1
)+
n
r=1
(
Cm-1r+1
-
Cm-1r
))
=(2n+1)(Cn+1m-1+Cnm-1).
故顶点属于P且恰有两个内角是锐角的凸m边形的个数为:(2n+1)(Cn+1m-1+Cnm-1).

据专家权威分析,试题“设m,n是给定的整数,4<m<n,A1A2…A2n+1是一个正2n+1边形,P={A1..”主要考查你对  逻辑推理  等考点的理解。关于这些考点的“档案”如下:

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐