已知线段AB,求AB的三等分点.-数学
题文
已知线段AB,求AB的三等分点. |
题文
已知线段AB,求AB的三等分点. |
题型:解答题 难度:中档
答案
作法:①过点A作射线AO,且使∠OAB为锐角; ②在射线AO上截取线段AC,然后再截取CD=DE=AC; ③连接BE,分别过点C,D作BE的平行线,交线段AB于点N,M,则点N,M分别是线段AB的三等分点. |
据专家权威分析,试题“已知线段AB,求AB的三等分点.-数学-”主要考查你对 直线,线段,射线,平行线的判定 等考点的理解。关于这些考点的“档案”如下:
直线,线段,射线平行线的判定
考点名称:直线,线段,射线
直线、射线、线段的基本性质:
图形 | 表示法 | 端点 | 延长线 | 能否度量 | 基本性质 | |
直线 | 没有端点的一条线 | 一条线, 不要端点 |
无 | 可以向两边无限延长 | 否 | 两端都没有端点,可以无限延长,不可测量的线 |
射线 | 只有一个端点的一条线 | 一条线, 只有一边有端点 |
一个 | 可以向一边无限延长 | 否 | 一端有端点,可以向一边无限延长,不可测量的线 |
线段 | 两边都有端点的一条线 | 一条线,两边都有端点 | 两个 | 不能延长 | 能 | 两端都有端点,不能延长,可测量的线 |
考点名称:平行线的判定
平行线的判定平行线的判定公理:
(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
还有下面的判定方法:
(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
判定方法的逆应用:
在同一平面内,两直线不相交,即平行。
两条直线平行于一条直线,则三条不重合的直线互相平行。
两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
6a⊥c,b⊥c则a∥b。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |