如图甲所示,将一副三角尺的直角顶点重合在点O处.(1)①探究∠AOD与∠BOC的关系:∵∠AOB=∠COD=90°∴∠AOB+_________=∠COD+_________即∠AOD_________∠BOC②探究∠AOC与∠BOD的关系:∵∠AOB-七年级数学

首页 > 考试 > 数学 > 初中数学 > 角的概念/2019-12-31 / 加入收藏 / 阅读 [打印]

题文

如图甲所示,将一副三角尺的直角顶点重合在点O处.
(1)①探究∠AOD与∠BOC的关系:
∵∠AOB=∠COD=90°
∴∠AOB+_________=∠COD+_________
即∠AOD_________∠BOC
②探究∠AOC与∠BOD的关系:
∵∠AOB=∠COD=90°,∠AOC+∠AOB+∠BOD+∠COD=360°
∴∠AOC+∠BOD=_________
即∠AOC与∠BOD的关系为_________
(2)若将等腰的三角尺绕点O旋转到如左图乙的位置.
①∠AOD和∠BOC相等吗?说明理由(仿照上面,写出推理过程).
②∠AOC和∠BOD的以上关系还成立吗?说明理由(仿照上面,写出推理过程).
题型:解答题  难度:中档

答案

解:(1)①∵∠AOB=∠COD=90°
∴∠AOB+∠BOD=∠COD+∠BOD
即∠AOD=∠BOC
②∵∠AOB=∠COD=90°,∠AOC+∠AOB+∠BOD+∠COD=360°
∴∠AOC+∠BOD=90°.
即∠AOC与∠BOD的关系为 互补.
故答案为:①∠BOD,∠BOD,=,②90°,互补;
(2)①∵∠AOB=∠COD=90°
∴∠AOB﹣∠BOD=∠COD﹣∠BOD
即∠AOD=∠BOC
②成立. 理由:∵∠AOB=∠COD=90°,
∴∠AOB+∠BOC+∠DOB=180°.
即:∠AOC+∠BOD=180°,
∴∠AOC与∠BOD的关系为互补.

据专家权威分析,试题“如图甲所示,将一副三角尺的直角顶点重合在点O处.(1)①探究∠AOD与..”主要考查你对  角的概念 ,余角,补角  等考点的理解。关于这些考点的“档案”如下:

角的概念 余角,补角

考点名称:角的概念

  • 角的基本概念:
    从静态角度认识角:由一个点出发的两条射线组成的图形叫角;
    从动态角度认识角:一条射线绕着它的顶点旋转到另一个位置,则这两条射线组成的图像叫角。有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。
    ①因为射线是向一方无限延伸的,所以角的两边无所谓长短,即角的大小与它的边长无关。
    ②角的大小可以度量,可以比较。
    ③根据角的度数,角可以分为锐角、直角、钝角、平角、周角。
    角的表示:角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,如∠1,∠α,∠BAD等。

  • 角的分类
    根据角的度数,角可以分为锐角、直角、钝角、平角、周角。
    平角:180的角,当角的两边在一条直线上时,组成的角叫做平角。即射线OA绕点O旋转,当终边在始边OA的反向延长线上时所成的角;
    直角:90的角,即线OA绕点O旋转,当终边与始边垂直时所成的角,平角的一半叫做直角;
    锐角:大于0小于90的角,小于直角的角叫做锐角;
    钝角:大于90小于180的角,大于直角且小于平角的角叫做钝角。
    周角:360的角,即射线OA绕点O旋转,当终边与始边重合时所成的角。

    角的性质:
    ①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关;
    ②角的大小可以度量,可以比较;
    ③角可以参与运算。

    角的度量:
    角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“。”,1度记作“1°”,n度记作“n°”。把1°的角60等分,每一份叫做1分的角,1分记作“1′”。把1′的角60等分,每一份叫做1秒的角,1秒记作“1″”。1°=60′=3600″。

考点名称:余角,补角

  • 余角:
    如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
    ∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A
    补角:
    如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
    ∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A

  • 补角的性质:
    同角的补角相等。比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
    等角的补角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。
    余角的性质:
    同角的余角相等。比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
    等角的余角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B
    注意:
    ①钝角没有余角;
    ②互为余角、补角是两个角之间的关系。如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;
    ③互为余角、补角只与角的度数相关,与角的位置无关。只要它们的度数之和等于90°或180°,就一定互为余角或补角。

  • 余角与补角概念认识提示:
    (1)定义中的“互为”一词如何理解?
    如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 , 同样∠2的补角是∠1。
    (2)互余、互补的两角是否一定有公共顶点或公共边?
    两角互余或互补,只与角的度数有关,与位置无关。
    (3)∠1 + ∠2 + ∠3 = 90°(180°),能说∠1 、∠2、 ∠3 互余(互补)吗?
    不能,互余或互补是两个角之间的数量关系。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐