计算2x3?4x2=______;将x2yx(x>0,y>0)化为最简二次根式得______;数据2,4,6,8的中位数是______.-数学

首页 > 考试 > 数学 > 初中数学 > 有理数的乘方/2019-02-19 / 加入收藏 / 阅读 [打印]

中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。
众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。

  • 中位数、众数的求法:
    中位数:
    ①将数据按大小顺序排列;
    ②当数据个数为奇数时,中间的那个数据就是中位数;
    当数据个数为偶数时,居于中间的两个数据的平均数才是中位数。

    众数:找出频数最多的数据,若几个数据频数最多且相同,此时众数就是这几个数据。

  • 考点名称:二次根式的定义

    • 二次根式:
      我们把形如叫做二次根式。
      二次根式必须满足:
      含有二次根号“”;
      被开方数a必须是非负数。

      确定二次根式中被开方数的取值范围:
      要是二次根式有意义,被开方数a必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围。

    • 二次根式性质:
      (1)a≥0 ; ≥0 (双重非负性 );

      (2)

      (3)
                                  0(a=0);

      (4)

      (5)

    • 二次根式判定:
      ①二次根式必须有二次根号,如等;
      ②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;
      ③二次根式定义中a≥0 是定义组成的一部分,不能省略;
      ④二次根式是一个非负数;
      ⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。

      二次根式的应用:
      主要体现在两个方面:
      (1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
      (2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐