阅读下面材料,并解答下列各题:在形如ab=N的式子中,我们已经研究过两种情况:①已知a和b,求N,这是乘方运算;②已知b和N,求a,这是开方运算;现在我们研究第三种情况:已知a和-数学

首页 > 考试 > 数学 > 初中数学 > 有理数的乘方/2019-02-19 / 加入收藏 / 阅读 [打印]

题文

阅读下面材料,并解答下列各题:
在形如ab=N的式子中,我们已经研究过两种情况:
①已知a和b,求N,这是乘方运算;
②已知b和N,求a,这是开方运算;
现在我们研究第三种情况:已知a和N,求b,我们把这种运算叫做对数运算.
定义:如果ab=N(a>0,a≠1,N>0),则b叫做以a为底N的对数,记着b=logaN.
例如:因为23=8,所以log28=3;因为2-3=
1
8
,所以log2
1
8
=-3.
(1)根据定义计算:
①log381=______;②log33=______;③log31=______;
④如果logx16=4,那么x=______.
(2)设ax=M,ay=N,则logaM=x,logaN=y(a>0,a≠1,M、N均为正数),
∵ax?ay=ax+y,∴ax+y=M?N∴logaMN=x+y,
即logaMN=logaM+logaN
这是对数运算的重要性质之一,进一步,我们还可以得出:
logaM1M2M3…Mn=______(其中M1、M2、M3、…、Mn均为正数,a>0,a≠1)
loga
M
N
=______(a>0,a≠1,M、N均为正数).
题型:解答题  难度:中档

答案

根据题中给出的已知条件可得:(1)①4,②1;③0;④2(每空1分,共4分)
(2)logaM1+logaM2+logaM3+logaMn
logaM-logaN(每空2分,共4分)
故答案为:(1)①4,②1;③0;④2;(2)logaM1+logaM2+logaM3+logaMn,logaM-logaN

据专家权威分析,试题“阅读下面材料,并解答下列各题:在形如ab=N的式子中,我们已经研究..”主要考查你对  有理数的乘方,零指数幂(负指数幂和指数为1)  等考点的理解。关于这些考点的“档案”如下:

有理数的乘方零指数幂(负指数幂和指数为1)

考点名称:有理数的乘方

  • 有理数乘方的定义:
    求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
    22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数。
    ①习惯上把22叫做2的平方,把23叫做2的立方;
    ②当地鼠是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写得小些。

  • 乘方的性质:
    乘方是乘法的特例,其性质如下:
    (1)正数的任何次幂都是正数;
    (2)负数的偶次幂是正数,负数的奇次幂是负数;
    (3)0的任何(除0以外)次幂都是0;
    (4)a2是一个非负数,即a2≥0。

  • 有理数乘方法则:
    ①负数的奇次幂是负数,负数的偶次幂是正数。例如:(-2)3=-8,(-2)2=4
    ②正数的任何次幂都是正数,0的任何正整数次幂都是0.例如:22=4,23=8,03=0

    点拨:
    ①0的次幂没意义;
    ②任何有理数的偶次幂都是非负数;
    ③由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成;
    ④负数的乘方与乘方的相反数不同。

  • 乘方示意图:

考点名称:零指数幂(负指数幂和指数为1)

  • 零指数幂定义:任何不等于零的数的零次幂都等于1。
    负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
    指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐