婵ê鐡ㄥΣ鎼佹儑閸忕厧鐨炬俊顖d悍缁辨繄浠︽潏銊π﹂柣顏勵槸閸㈡煡鎳曞銉㈠亾閸屾侗鍎橀梻鍌ゅ枦椤㈡垶绂嶉崫鍕闂侇叏缍€缁旂喖鏁嶉悢鐑樼畳闁活亣鍋愬▔鈺呮儎閸繍妲遍柕鍡楀€规晶鐘虫叏鐎n喒鍋撴担瑙勑氱憸鐗堝釜缁辨繈宕i崼銉㈠亾娴e憡鍋樼憸鐗堝笒楠炴捇濡撮崒婵嗩仧闁告帞澧楅惈娆撳础濡ゅ嫬鍨佸☉鎾筹攻濡差剟鏁嶇仦钘夌.濞戞挸娲ら幏浼村及閵夈倗绉堕柕鍡嫹
一个角的补角比它的余角的3倍还大32°,求这个角的度数-七年级数学
题文
一个角的补角比它的余角的3倍还大32 °,求这个角的度数 |
答案
解:设这个角为x度,则它的补角的度数为180﹣x,余角的度数为90﹣x. 由题意,得180﹣x=3(90﹣x)+32, 解之得x=61. 故这个角为61 ° |
据专家权威分析,试题“一个角的补角比它的余角的3倍还大32°,求这个角的度数-七年级数学..”主要考查你对 余角,补角 等考点的理解。关于这些考点的“档案”如下:
余角,补角
考点名称:余角,补角
余角:
如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A
补角:
如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A- 补角的性质:
同角的补角相等。比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
等角的补角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。
余角的性质:
同角的余角相等。比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。
注意:
①钝角没有余角;
②互为余角、补角是两个角之间的关系。如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;
③互为余角、补角只与角的度数相关,与角的位置无关。只要它们的度数之和等于90°或180°,就一定互为余角或补角。 - 余角与补角概念认识提示:
(1)定义中的“互为”一词如何理解?
如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 , 同样∠2的补角是∠1。
(2)互余、互补的两角是否一定有公共顶点或公共边?
两角互余或互补,只与角的度数有关,与位置无关。
(3)∠1 + ∠2 + ∠3 = 90°(180°),能说∠1 、∠2、 ∠3 互余(互补)吗?
不能,互余或互补是两个角之间的数量关系。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:∠α的补角为42°,∠β的余角是52°,那么∠α和∠β的大小关系是[]A.∠α>∠βB.∠α<∠βC.∠α=∠βD.不能确定-七年级数学
下一篇:如图,点A、O、B在一条直线上,∠1是锐角,则∠1的余角是[]A.∠2﹣∠1B.∠2﹣∠1C.(∠2﹣∠1)D.(∠1+∠2)-七年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |