观察如图所示的三棱柱.①用符号表示下列线段的位置关系:AC______CC1,BC______B1C1;②△A1B1C1可看作是把△ABC______而得到的.-数学
题文
观察如图所示的三棱柱. ①用符号表示下列线段的位置关系:AC______ CC1,BC______ B1C1; ②△A1B1C1 可看作是把△ABC______而得到的. |
题文
观察如图所示的三棱柱. ①用符号表示下列线段的位置关系:AC______ CC1,BC______ B1C1; ②△A1B1C1 可看作是把△ABC______而得到的. |
题型:填空题 难度:中档
答案
①AC⊥CC1,BC∥B1C1; ②△A1B1C1 可看作是把△ABC 平移而得到的. 故答案为:⊥,∥;平移. |
据专家权威分析,试题“观察如图所示的三棱柱.①用符号表示下列线段的位置关系:AC______C..”主要考查你对 认识立体几何图形,平行线的判定,垂直的判定与性质,平移 等考点的理解。关于这些考点的“档案”如下:
认识立体几何图形平行线的判定垂直的判定与性质平移
考点名称:认识立体几何图形
几何图形 | 图形 |
长方体 | |
正方体 | |
圆锥 | |
圆柱 | |
圆锥 | |
球 |
考点名称:平行线的判定
平行线的判定平行线的判定公理:
(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
还有下面的判定方法:
(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
判定方法的逆应用:
在同一平面内,两直线不相交,即平行。
两条直线平行于一条直线,则三条不重合的直线互相平行。
两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
6a⊥c,b⊥c则a∥b。
考点名称:垂直的判定与性质
考点名称:平移
平移基本性质:
经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;
(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等
(3)多次连续平移相当于一次平移。
(4)偶数次对称后的图形等于平移后的图形。
(5)平移是由方向和距离决定的。
这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
平移的条件:确定一个平移运动的条件是平移的方向和距离。
平移的三个要点
1 原来的图形的形状和大小和平移后的图形是全等的。
2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)
3 平移的距离。(长度,如7厘米,8毫米等)
平移作用:
1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |