(6分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:小-八年级数学
题文
(6分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题: 小题1:(1)根据上面多面体模型,完成表格中的空格:
小题3:(3)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是 小题4:(4)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,x+y= |
答案
小题1:(1)20 12 30 小题2:(2)V+F-E=2 小题3:(3)20 小题4:(4)14 |
略 |
据专家权威分析,试题“(6分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数..”主要考查你对 认识立体几何图形,几何体的展开图,几何体的表面积,体积,截一个几何体 等考点的理解。关于这些考点的“档案”如下:
认识立体几何图形几何体的展开图几何体的表面积,体积截一个几何体
考点名称:认识立体几何图形
- 立体几何图形:
从实物中抽象出来的各种图形,统称为几何图形,几何图形是数学研究的主要对象之一。有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各个部分不都在同一平面内,它们是立体图形。由一个或多个面围成的可以存在于现实生活中的三维图形。点动成线,线动成面,面动成体。即由面围成体,看一个体最多看到立体图形实物三个面。 - 常见立体几何图形及性质:
①正方体:
有8个顶点,6个面。每个面面积相等(或每个面都有正方形组成)。有12条棱,每条棱长的长度都相等。(正方体是特殊的长方体)
②长方体:
有8个顶点,6个面。每个面都由长方形或相对的一组正方形组成。有12条棱,相对的4条棱的棱长相等。
③圆柱:
上下两个面为大小相同的圆形。有一个曲面叫侧面。展开后为长方形或正方形或平行四边形。有无数条高,这些高的长度都相等。
④圆锥:
有1个顶点,1个曲面,一个底面。展开后为扇形。只有1条高。四面体有1个顶点,四面六条棱高。
⑤直三棱柱:
三条侧棱切平行,上表面和下表面是平行且全等的三角形。
⑥球:
球是生活中最常见的图形之一,例如篮球、足球都是球,球是由一个面所围成的几何体。 - 常见的立体几何图形视图: