已知一个软糖包装盒是密封的直三棱柱型,底面是边长为2cm等边三角形,侧棱长为10cm,则这个包装盒的表面积是()cm2.A.23+60B.23+20C.3+60D.3+20-数学
题文
已知一个软糖包装盒是密封的直三棱柱型,底面是边长为2cm等边三角形,侧棱长为10cm,则这个包装盒的表面积是( )cm2.
|
答案
A |
据专家权威分析,试题“已知一个软糖包装盒是密封的直三棱柱型,底面是边长为2cm等边三角..”主要考查你对 几何体的表面积,体积,等边三角形 等考点的理解。关于这些考点的“档案”如下:
几何体的表面积,体积等边三角形
考点名称:几何体的表面积,体积
- 几何体的表面积和体积要求:
认识柱、锥、台、球及其简单组合体的结构特征,了解柱、锥、台、球的概念;
了解柱、锥、台、球的表面积与体积的计算,并能运用公式计算柱、锥、台、球及其简单组合体的表面积与体积。 - 几何体一般概念及性质:
1、圆柱:可以看做以矩形的一边为旋转轴、旋转一周形成的曲面所围成的几何体
2、圆锥:可以看做以直角三角形的一直角边为旋转轴、旋转一周形成的曲面所围成的几何体
3、圆台:可以看做以直角梯形中垂直于底边的腰所在的直线为旋转轴、旋转一周形成的曲面所围成的几何体
4、球:一个半圆绕着它的直径所在的直线旋转一周所形成的曲面所围成的几何体
5、棱柱有两个面互相平行、而其余每相邻两个面的交线都互相平行
6、多面体是由若干个平面多边形所围成的几何体
7、棱锥有一个面是多边形,而其余个面都是有一个公共顶点的三角形 几何体的表面积,体积计算公式:
1、圆柱体:
表面积:2πRr+2πRh
体积:πR2h (R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:
表面积:πR2+πR[(h2+R2)的平方根]
体积: πR2h/3 (r为圆锥体低圆半径,h为其高,3、正方体:
a-边长,
S=6a2 ,V=a34、长方体:
a-长 ,b-宽 ,c-高
S=2(ab+ac+bc) V=abc5、棱柱:
S-底面积 h-高
V=Sh6、棱锥 :
S-底面积 h-高
V=Sh/37、棱台:
S1和S2-上、下底面积 h-高
V=h[S1+S2+(S1S2)^1/2]/38、拟柱体:
S1-上底面积 ,S2-下底面积 ,S0-中截面积 h-高,
V=h(S1+S2+4S0)/69、圆柱:
r-底半径 ,h-高 ,C—底面周长 S底—底面积 ,S侧—侧面积 ,S表—表面积
C=2πr S底=πr2,S侧=Ch ,S表=Ch+2S底 ,V=S底h=πr2h10、空心圆柱:
R-外圆半径 ,r-内圆半径 h-高
V=πh(R^2-r^2)11、直圆锥 :
r-底半径 h-高
V=πr^2h/312、圆台:
r-上底半径 ,R-下底半径 ,h-高
V=πh(R2+Rr+r2)/313、球:
r-半径 d-直径
V=4/3πr^3=πd^3/614、球缺
h-球缺高,r-球半径,a-球缺底半径
V=πh(3a2+h2)/6 =πh2(3r-h)/315、球台:
r1和r2-球台上、下底半径 h-高
V=πh[3(r12+r22)+h2]/616、圆环体:
R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径
V=2π2Rr2 =π2Dd2/417、桶状体:
D-桶腹直径 d-桶底直径 h-桶高
V=πh(2D2+d2)/12 ,(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形)
考点名称:等边三角形
- 等边三角形定义:
三条边都相等的三角形叫做等边三角形,“等边三角形”也被称为“正三角形”。是特殊的等腰三角形。
如果一个三角形满足下列任意一条,则它必满足另一条,三边相等或三角相等的三角形叫做等边三角形:
1.三边长度相等;
2.三个内角度数均为60度;
3.一个内角为60度的等腰三角形。 性质:
①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)判定方法:
①三边相等的三角形是等边三角形(定义)
②三个内角都相等(为60度)的三角形是等边三角形
③有一个角是60度的等腰三角形是等边三角形
④ 两个内角为60度的三角形是等边三角形
说明:可首先考虑判断三角形是等腰三角形。
等边三角形的性质与判定理解:
首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。等比三角形的尺规做法:
可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |