一个几何体的三视图如下图所示,则这个几何体的名称是______.并根据三视图画出它的平面展开图,并求其表面积S.-数学

题文

一个几何体的三视图如下图所示,则这个几何体的名称是______.并根据三视图画出它的平面展开图,并求其表面积S.

题型:解答题  难度:中档

答案



这个几何体的名称是三棱柱;
平面展开图如图所示;
由三视图可知,三棱柱的底面是等腰三角形,腰长为

12+0.752
=1.25,
∴S表面积=2S底面积+S侧面积=2×
1
2
×(1+1)×0.75+(1+1+2×1.25)×1.5=1.5+6.75=8.25(cm2).
故答案为三棱柱.

据专家权威分析,试题“一个几何体的三视图如下图所示,则这个几何体的名称是______.并根..”主要考查你对  几何体的表面积,体积,勾股定理,视图(盲区)  等考点的理解。关于这些考点的“档案”如下:

几何体的表面积,体积勾股定理视图(盲区)

考点名称:几何体的表面积,体积

  • 几何体的表面积和体积要求:
    认识柱、锥、台、球及其简单组合体的结构特征,了解柱、锥、台、球的概念;
    了解柱、锥、台、球的表面积与体积的计算,并能运用公式计算柱、锥、台、球及其简单组合体的表面积与体积。

  • 几何体一般概念及性质:
    1、圆柱:可以看做以矩形的一边为旋转轴、旋转一周形成的曲面所围成的几何体
    2、圆锥:可以看做以直角三角形的一直角边为旋转轴、旋转一周形成的曲面所围成的几何体
    3、圆台:可以看做以直角梯形中垂直于底边的腰所在的直线为旋转轴、旋转一周形成的曲面所围成的几何体
    4、球:一个半圆绕着它的直径所在的直线旋转一周所形成的曲面所围成的几何体
    5、棱柱有两个面互相平行、而其余每相邻两个面的交线都互相平行
    6、多面体是由若干个平面多边形所围成的几何体
    7、棱锥有一个面是多边形,而其余个面都是有一个公共顶点的三角形

  • 几何体的表面积,体积计算公式:
    1、圆柱体: 
    表面积:2πRr+2πRh
    体积:πR2h (R为圆柱体上下底圆半径,h为圆柱体高) 

    2、圆锥体: 
    表面积:πR2+πR[(h2+R2)的平方根]
    体积: πR2h/3 (r为圆锥体低圆半径,h为其高,

    3、正方体:
    a-边长,
    S=6a2 ,V=a3

    4、长方体: 
    a-长  ,b-宽  ,c-高
    S=2(ab+ac+bc)  V=abc 

    5、棱柱:
    S-底面积  h-高
    V=Sh 

    6、棱锥 :
    S-底面积  h-高
    V=Sh/3 

    7、棱台: 
    S1和S2-上、下底面积  h-高
    V=h[S1+S2+(S1S2)^1/2]/3 

    8、拟柱体: 
    S1-上底面积  ,S2-下底面积  ,S0-中截面积  h-高,
    V=h(S1+S2+4S0)/6 

    9、圆柱: 
    r-底半径  ,h-高  ,C—底面周长  S底—底面积  ,S侧—侧面积  ,S表—表面积
    C=2πr  S底=πr2,S侧=Ch  ,S表=Ch+2S底  ,V=S底h=πr2h 

    10、空心圆柱: 
    R-外圆半径  ,r-内圆半径  h-高
    V=πh(R^2-r^2) 

    11、直圆锥 :
    r-底半径  h-高
    V=πr^2h/3 

    12、圆台: 
    r-上底半径  ,R-下底半径  ,h-高
    V=πh(R2+Rr+r2)/3 

    13、球: 
    r-半径  d-直径
    V=4/3πr^3=πd^3/6 

    14、球缺 
    h-球缺高,r-球半径,a-球缺底半径
    V=πh(3a2+h2)/6 =πh2(3r-h)/3 

    15、球台: 
    r1和r2-球台上、下底半径  h-高
    V=πh[3(r12+r22)+h2]/6 

    16、圆环体: 
    R-环体半径  D-环体直径  r-环体截面半径  d-环体截面直径
    V=2π2Rr2 =π2Dd2/4 

    17、桶状体: 
    D-桶腹直径  d-桶底直径  h-桶高
    V=πh(2D2+d2)/12  ,(母线是圆弧形,圆心是桶的中心) 
    V=πh(2D2+Dd+3d2/4)/15  (母线是抛物线形)

考点名称:勾股定理

  • 勾股定理:
    直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,如果直角三角形的两直角边长分别为a,b,斜边长为c,那么
    勾股定理只适用于直角三角形,应用于解决直角三角形中的线段求值问题。

  • 定理作用
    ⑴勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。
    ⑵勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。
    ⑶勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。
    ⑷勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。

  • 勾股定理的应用:
    数学
    从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数。
    勾股定理在几何学中的实际应用非常广泛,较早的应用案例有《九章算术》中的一题:“今有池,芳一丈,薛生其中央,出水一尺,引薛赴岸,适与岸齐,问水深几何?答曰:"一十二尺"。

    生活
    勾股定理在生活中的应用也较广泛,举例说明如下:
    1、挑选投影设备时需要选择最佳的投影屏幕尺寸。以教室为例,最佳的屏幕尺寸主要取决于使用空间的面积,从而计划好学生座位的多少和位置的安排。选购的关键则是选择适合学生的屏幕而不是选择适合投影机的屏幕,也就是说要把学生的视觉感受放在第一位。一般来说在选购时可参照三点:
    第一,屏幕高度大约等于从屏幕到学生最后一排座位的距离的1/6;
    第二,屏幕到第一排座位的距离应大于2倍屏幕的高度;
    第三,屏幕底部应离观众席所在地面最少122厘米。
    屏幕的尺寸是以其对角线的大小来定义的。一般视频图像的宽高比为4:3,教育幕为正方形。如一个72英寸的屏幕,根据勾股定理,很快就能得出屏幕的宽为1.5m,高为1.1m。
    2、2005年珠峰高度复测行动。
    测量珠峰的一种方法是传统的经典测量方法,就是把高程引到珠峰脚下,当精确高程传递至珠峰脚下的6个峰顶交会测量点时,通过在峰顶竖立的测量觇标,运用“勾股定理”的基本原理测定珠峰高程,配合水准测量、三角测量、导线测量等方式,获得的数据进行重力、大气等多方面改正计算,最终得到珠峰高程的有效数据。
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐